Primates and Primate Evolution · Who are the modern primates? · What are their two major divisions? · What is the geographic range of living primates? · What is the size range of living primates? Primate evolution · When did primates first appear in the fossil record? · What are the epochs of the Cenozoic and what kinds of primates are found in each epic? · What do we find in the Paleocene and where? · What do we find in the Eocene and where? 2 Eocene primates · What kinds of primates are found in the Eocene? What did they look like? What kind of environment did they live in? . What "grade" of primates are found in the Eocene? · Are these primates of the Strepsirrhine or Haplorhine lineage? 3

Strepsirrhines

- What are the characteristics that define the strepsirrhines?
 - Which are primitive to primates and which are derived?
- What are the different kinds of strepsirrhines?
 How do they differ?

Lemurs

- · Where do they live?
- · How do they live?
- What are their identifying characteristics?

5

Lorises

- Where do they live?
- · How do they live?
- What are their identifying characteristics?

6

Tarsier

- Why is the Tarsier considered both a Haplorhine and a Prosimian?
- What features align it with each group?

7

Midterm review

- Chapters I-6, I/2 of 7, little bit in 8
- Everything will be able to be done on the test
- Bring writing utensils
- Multitude of formats
- Use the "Questions from Last Class" to study

Questions from last class

- What is evolution
 - How do you define it?
 - What are living examples of evolution?
- Is evolution JUST a theory?
 - · What does it mean to say this?

9

9

More questions

- · Why is anthropology a science?
- · What is the scientific method?
- · What is a scientific theory?

10

10

Questions from last class

- What makes a science a science?
 - · What is the scientific method?
 - What is a hypothesis? How is it tested?
 - Does scientific research prove things false or true?
- · What is a theory, scientifically?
 - Does being a theory make evolution more or less believable?

ı

11

Question:

- · A scientific theory is
 - a. a guess about how the world works.
 - a really good guess about how the world works.
 - c. a hypothesis in need of testing.
 - d. a hypothesis that has been tested a couple of times and might hold true.
 - e. an idea that has been tested and retested and stood up to all tests - its as close to fact as scientists get.

)	
1	
2	

- · A scientific theory is
 - a. a guess about how the world works.
 - b. a really good guess about how the world
 - c. a hypothesis in need of testing.
 - d. a hypothesis that has been tested a couple of times and might hold true.
 - e. an idea that has been tested and retested and stood up to all tests - its as close to fact as scientists get.

13

Question:

True /False To say that evolution is a theory means that there is no compelling evidence to support it.

Question:

True /False To say that evolution is a theory means that there is no compelling evidence to support it.

Questions from Last Class

- · What is the Great Chain of Being? Why is it important?
 - · When did ideas about the world change from
- · What impact did each of the following people have on evolutionary thought? What ideas are associated with them?
 - Linnaeus
 - Buffon
 - Cuvier 16

Question:			
The idea that all species that could exist did			
exist and that they were immutable is called the			
9	17		
Question:			
24004.0111			
The idea that all species that could exist did			
exist and that they were immutable is called the FIXITY OF SPECIES.			
the fixer of species.			
	18		
•	10		
Question:			
Question.	_		
 Archbishop James Ussher calculated the 	_		
age of the earth using	_		
geologic evidence b. astronomical data	_		
c. simple guesswork			
d. the Bible			
e. ancient Greek and Roman texts			
	19		
	_		
Question:			
Archbishop James Ussher calculated the	_		
age of the earth using	_		
a. geologic evidence			
b. astronomical data			
c. simple guesswork			

d. the Bible

e. ancient Greek and Roman texts

Question:	
True/ False	
Buffon is associated with the idea of Catastrophism.	
idea of Catastrophism.	
b	21
	」
Question:	
Question.	
True/ False	
FALSE Buffon is associated with	
the idea of Catastrophism.	
10	22
And Lamarck	
What was Lamarck's contribution to	
evolutionary thought?	
 How does Inheritance of Acquired 	
Characteristics explain evolutionary change?	
 How was it right? How was it wrong? 	
23	23
	_
	7
Question:	
e accarding	
The problem with Lamarckian evolution is	

The problem with Lamarckian evolution is acquired characteristics cannot be inherited they don't affect the gametes.

25

Last Time

- What was Malthus's contribution to Darwinian thought?
- · What was Lyell's and Hutton's contribution?

26

26

Darwin

- · When did Darwin go on the Beagle?
- When was The Origin of Species published?
- Why did it take so long?
- Who was Alfred Russell Wallace?

27

27

Darwin, cont.

- Why is it called Natural Selection?
- What are the necessary conditions for evolution by natural selection?

(book has 3, I gave 4)

- Can anything evolve by natural selection?
- Is "Survival of the Fittest" an accurate description of the theory? Why or why not?

'n	o
_	റ
_	_

Question:	
is the idea that the processes that shape the world are the same today as they have been in the past.	
э	29
Question:	
UNIFORMITARIANISM is the idea that the	
processes that shape the world are the same today as they have been in the past.	
¥	30
Question:	
The critical idea that all things are in a struggle for existence was the idea of	
(Hutton / Malthus).	
¥	31
0	
Question:	-
The critical idea that all things are in a struggle for existence was the idea of	
(Hutton / Malthus).	

- Of the following which is not an element of natural selection
 - a. competition for resources
 - b. variation amongst individuals
 - c. differential reproduction
 - d. differential survival
 - e. heritability of the variations

10

33

Question:

- Of the following which is not an element of natural selection
 - a. competition for resources
 - b. variation amongst individuals
 - c. differential reproduction
 - d. differential survival
 - e. heritability of the variations

-

34

Question:

Natural selection operates on the level of the

(individual / population).

35

Question:

Natural selection operates on the level of

(individual / population).

js.

Heritability a 3 Part question

- How come we resemble our parents? That is, how is our heritable information passed from generation to generation?
- How does the genetic code create a characteristic?
- Where does variation in the code come from?

37

Heredity

- What is a phenotype? What is a genotype?
- How are phenotypes created?
- What are the relative influences of genetics and environment on phenotype?

38

38

3 Part question

- How does the genetic code create a characteristic?
- How come we resemble our parents? That is, how is our heritable information passed from generation to generation?
- Where does variation in the code come from?

19

39

DNA

- What is DNA?
 - What is its shape? Why is the shape important?
- Where is it found?
- What does it do?

40

DNA

- What bases make up DNA?
- · How do they pair?
- What does the sequence of bases do?

4

41

Proteins

- · What is a protein?
- What are amino acids?
- How do they make proteins?
- How does DNA make proteins?

40

42

Protein Synthesis

- · What are transcription and translation?
- How does RNA differ from DNA
- What is the difference between mRNA and tRNA?
- · How does the ribosome help?
- How is the protein made?

40

43

Question:

DNA codes for amino acids in its sequences of (2/3/4) bases.

Question	
Question:	
DNA codes for amino acids in its sequences	
of (2/3/4) bases.	
*	45
	
Question:	
Question.	
The organelle in the cytoplasm of the cell that matches up mRNA and tRNA	
anticodons is called a	
*	46
Question:	
Q	
The organelle in the cytoplasm of the cell that matches up mRNA and tRNA	
anticodons is called a RIBOSOME.	
*	47
Question:	
3.70	
DNA has 64 different codes to code for amino acids. Mistakes can occur	
because these codes are, there is more than one for many of the	
there is more than one for many of the amino acids.	
*	48

	_	
Question:		
3.70		
DNA has 64 different codes to code for 20 amino acids. Mistakes can occur		
because these codes are REDUNDANT, there is more than one for many of the		
amino acids.		
*	49	
Question:		
What is a protein?		
16	50	
Question:		
What is a protein?		
A building block of life, created by one or		
more polypeptide chains		
6	<u></u> 51	
	¬	
O		

The specific sequence of DNA that we carry on one of our chromosomes is called a(n) (gene / locus / allele).

The specific sequence of DNA that we carry on one of our chromosomes is called a(n) (gene / locus / allele).

53

Question:

- The base that bonds with adenine in DNA is
 - a. cytosine
 - b. thymine
 - c. guanine
 - d. uracil
 - e. cyclomine

54

54

Question:

- The base that bonds with adenine in DNA
 - a. cytosine
 - b. thymine
 - c. guanine
 - d. uracil
 - e. cyclomine

55

55

Question:

The process of matching tRNA anticodons with a strand of mRNA is called (transcription / translation).

,

Qı	uest	ion

The process of matching tRNA anticodons with a strand of mRNA is called (transcription / translation).

57

Mendel

- What was Mendel's contribution to our understanding of Heredity?
- What is the Law of Segregation?
- What is the Law of Independent Assortment?
- What is a punnett square and how is it used to illustrate the principles of inheritance?

58

58

Question:

Mendel's idea that each individual has two particles of inheritance for each trait and that they pass one of each pair on to their offspring is the

50.

59

Question:

Mendel's idea that each individual has two particles of inheritance for each trait and that they pass one of each pair on to their offspring is the PRINCIPLE OF SEGREGATION.

Question:	
Given two parents, both heterozygote for a	
trait, what is the probability of having an offspring with the recessive phenotype?	
¥.	61
Question:	
Given two parents, both heterozygote for a trait, what is the probability of having an	
offspring with the recessive phenotype?	
25%	
40	62
	
Question	
Question:	
Draw a punnett square of the potential	
offspring of a parent with AB bloodtype and one with O bloodtype.	
	63

Draw a punnett square of the potential offspring of a parent with AB bloodtype and one with O bloodtype.

ĺ		0	0
Ī	Α	AO	AO
Ī	В	во	во

.

Question:	
Mendel used the term to	
refer to the form of a trait that could be hidden in combination with another form.	
hidden in combination with another form.	
46	65
Question:	
Q	
Mendel used the term RECESSIVE to refer to the form of a trait that could be	
hidden in combination with another form.	
	66
46	
How is genetype determined?	
How is genotype determined?	
 How does DNA code for the making of proteins? 	
 How do the two copies of DNA you carry 	
 work together to create your phenotype? How do you get your two copies of any 	
chromosome or locus through meiosis?	
is a	67
Meiosis	
How does meiosis divide cells? Microsophanisis and district cells?	
What are haploid and diploid cells? Describe the process of majoris?	
 Describe the process of meiosis? When and how during meiosis is variation 	
introduced?	
 How do you get new genotypes? 	

Where does variation in the code come from? Mutation Crossing Over Recombination

What are the different types of mutation?

- insertion, deletion, substitution
- How do each of these potentially change the protein created?
- How common is mutation?

70

69

Question:

The division of somatic cells is called (meiosis / mitosis).

71

Question:

The division of somatic cells is called (meiosis / mitosis).

Question:	
Questioni	
	-
The process by which the chromosome pairs exchange information in meiosis, exchange	
parts of themselves is called	
W .	73
"	
Question:	
Q	
The control by Alde de decrease and a	
The process by which the chromosome pairs exchange information in meiosis, exchange	
parts of themselves is called CROSSING OVER.	
N N	74
Question:	
Independent assortment of chromosomes is shown in the (reductional / equational)	
division stage in meiosis.	
В	75
Question:	
Independent assortment of chromosomes is	
shown in the (reductional / equational) division stage in meiosis.	-
division stage in meiosis.	
N.	76

- W W W W W W W W.			
Question:			
Mutations during (meiosis / mitosis) can be			
passed on to the next generation.			
79	77		
	_		
Question:			
7			
Mutations during (meiosis / mitosis) can be passed on to the next generation.			
n	78		
Question:			
2400410111			
True/False			
All mutations that occur during meiosis have an impact on the phenotype of the individual			
carrying the mutation.			
	79		
79			
	\neg		
Question:			
Question.			
True/False			
All mutations that occur during meiosis have			
an impact on the phenotype of the individual carrying the mutation.			
	i i		

Question:	
 Name three ways in which variation is introduced during meiosis. 	
	81
	7
Overtions	
Question:	
	-
Name three ways in which variation is	
introduced during meiosis.	
 mutation, crossing over, recombination 	
R.	82
Question:	
The mutation with the least possible impact	
on the phenotype is a (n)	
mutation.	
a. insertion b. deletion	
c. replacement	-
d. chromosomal	
e. point	
	83
•	
Question:	
The mutation with the least possible impact	
on the phenotype is a (n) mutation.	
a. insertion	
b. deletion	
c. replacement	
d. chromosomal	

e. point

- Mutations often have little phenotypic effect herause
 - a. they often occur in non-coding regions.
 - codon changes are often insignificant because of the redundancy of DNA
 - proteins can withstand minor amino acid variations
 - d. all of the above
 - e. A and B only

85

Question:

- Mutations often have little phenotypic effect because
 - a. they often occur in non-coding regions.
 - codon changes are often insignificant because of the redundancy of DNA
 - proteins can withstand minor amino acid variations
 - d. all of the above
 - e. A and B only

6

86

Question:

(Pleiotropy / Polygeny) is the affect of a single gene on a multitude of different traits.

10

87

88

Question:

(Pleiotropy / Polygeny) is the affect of a single gene on a multitude of different traits.

0	
Question:	
Having two of the same alleles for a trait is	
termed being	
	89
	7
Question:	
Having two of the same alleles for a trait is	
termed being HOMOZYGOUS.	
16.	90
	7
Question:	
is the proportion of the total variation observed in a trait within a	
population that can be attributed to genetics rather than to the environment.	
rather than to the environment.	
*	91
	_
Question:	
HERITABILITY is the proportion of the total variation observed in a trait within a	
population that can be attributed to genetics	
rather than to the environment.	

Modern Synthesis

- · What is the modern synthesis?
- How do we define evolution?

Questions

- · What are the four forces of evolution?
- How does each change gene frequencies within and between populations?
- What is a population?
- What are Macroevolution and Microevolution?

Microevolution and Macroevolution

- How does Microevolution add up to macroevolution?
- How are species created?

The four forces

- What is genetic drift?
 - When is genetic drift most effective?
- Why is mutation so important?
- What is the role of gene flow in maintaining species?
- What are the different ways in which Natural selection works?

93			
94			
95			

Question:	_	
2000.0	_	
all new variation.		
	_	
	_	
N2	97	
	1	
•		
Question:		
MUTATION is the ultimate source of all new		
variation.	_	
*		
Question:		
Selection of the middle of a range of		
variation is called (directional / stabilizing / disruptive) selection.		
*	99	
	1	
Owenien		
Question:	_	
Selection of the middle of a range of variation is called (directional / stabilizing /		
disruptive) selection.	_	
	_	
	_	

Question: · Short term evolutionary changes are called a. epigenetic b. megaevolution c. microevolution d. macroevolution e. quantum evolution 101 Question: Short term evolutionary changes are called a. epigenetic b. megaevolution c. microevolution d. macroevolution e. quantum evolution 102 Question: Name the four forces of evolution and how each affects variation within and between populations. 103

Question:

Name the four forces of evolution and how each affects variation within and between populations.

mutation - increase, increase nat sel - decrease/maintain, increase genetic drift - decrease, increase gene flow - increase, decrease

Question:	
Speciation due to geographic separation of	
two populations is called (allopatric /	
sympatric) speciation.	
	105
185	105
	7
Overtions	
Question:	
Speciation due to geographic separation of two populations is called (allopatric /	
sympatric) speciation.	
3,11,1111111111111111111111111111111111	
-	106
Question:	
1.70	
Define Evolution.	
	107
160	_ 107
Question:	
Question.	
Define Evolution.	
Changes in gene frequencies over time.	
Changes in garle in equalities over time.	
	108

Microevolution and Macroevolution

- How does Microevolution add up to macroevolution?
- What are species?
- · How are species created?
- What are anagenesis and cladogenesis?

109

Question:

Small changes in gene frequencies from generation to generation is (microevolution / macroevolution).

| 110

Question:

Small changes in gene frequencies from generation to generation is (microevolution / macroevolution).

111

Question:

Species are defined as populations which are ______ from other populations.

Question:	
Species are defined as populations which are	
reproductively isolated from other populations.	
populations.	
74	113
Question:	
Evolutionary changes in a lineage over time	
resulting in the change from one species to the next is called	
are next is cared	
14	114
Question:	
Evolutionary changes in a lineage over time	
resulting in the change from one species to the next is called anagenesis.	
inš	115
117-2017-000-2017-000	
Last time	
 What are the sources for human variation? 	
 How do humans vary across geography? 	
What is a cline?	
-	116

Last Time

- What forces have been responsible for shaping modern human variation?
- · What have humans adapted to?
- How has culture impacted adaptation and vice versa?
- What are the different ways of adapting to an environmental stressor?

117

Adaptation

- What is adaptation?
 - · What is genetic adaptation?
 - · What is acclimatization?
- · How do these shape human variation?

118

Last time

- · How have humans adapted to?
 - solar radiation
 - disease
 - heat/cold
 - altitude
- What other examples can you think of of something that resulted through adaptation?

119

What have humans adapted to?

 Can you name at least one environmental stressor, how it can impact fitness, and how humans adapt, culturally, behaviorally, physiologically, and genetically to that challenge?

120

Human Variation

- How has all this adaptation resulted in human evolution?
- How do biology and culture impact each other in human adaptation?
- How does this variation add up to what we think of as racial differences among people?

121

What is Race?

- What is a RACE?
- How do we define it biologically?
 - Do humans fit the biological definition of race?
- · How do we define it culturally?

122

FAHV

- What does it mean to say that humans vary more within populations than between?
- · What is Fst?
- How are populations real but races not?
- What are the historical and political impacts to defining race?
- How do racial definitions differ from culture to culture?

123

Question:

The continuous geographic variation of a trait is called a _____.

Question:	
The continuous geographic variation of a trait is called a CLINE.	
trait is called a CLINE.	
ilS	125
Question:	
- T	
True / False	
Each human population in general has all the	
same alleles as other human populations, just at different frequencies.	
at unit etc ir equencies.	
iès	126
Question:	
True / False	
Each human population in general has all the	
same alleles as other human populations, just at different frequencies.	
at unierent irequencies.	
489	127
Question:	-
C	
 Of the following, which is NOT a genetic adaptation to living in the arctic? 	
a. more body fat, rounder bodies	
b. shorter limbs	
c. larger noses	-
d. darker skin	
e more rapid respiration	

Question:	_	
Of the following, which is NOT a genetic	_	
adaptation to living in the arctic?	_	
a. more body fat, rounder bodies	_	
b. shorter limbs		
c. larger noses		
d. darker skin	_	
e. more rapid respiration	129	
Question:		
Tanning is a (genetic adaptation / acclimatization) to greater solar radiation.	_	
The state of the s	_	
	_	
199	130	
Question:		
Total Control Control		
Tanning is a (genetic adaptation / acclimatization) to greater solar radiation.		
Vicinity of the Control of the Contr	_	
	_	
*	131	
Question:		

Name one environmental stressor that humans have to adapt to and how they might adapt with behavior, acclimatization, and, over time, genetically.

Question:	
Question	
Name one environmental stressor that humans have to adapt to and how they might	
adapt with behavior, acclimatization, and, over time, genetically.	
Disease: wash hands, build up antibodies,	
genetic solution like sickle cell.	
100	133
	_
	7
Question:	
December 1881 of the Section of the	
Bergmann and Allen's rules predict that the body shape in a cold environment will be	
•	
	134
	」
	٦
Question:	
Questioni	
Bergmann and Allen's rules predict that the body shape in a cold environment will be	
short and stocky.	
	135
- 18	
Overtions	
Question:	
True/ False	
A human's skin color is a good indicator of their geographic origin.	

Question:	
- 7	
True/ False	
A human's skin color is a good indicator of	
their geographic origin.	
100*	137
14	
Question:	
Question.	
True/ False	
Human populations are different enough	
from one another that different biological races can be defined.	
race can be defined.	-
198	138
O	
Question:	
True/ False	
Human populations are different enough	
from one another that different biological	
races can be defined.	
198	139
Last class	
 How do you determine relationships amongst organisms? 	
 What are homologous and analogous structures? 	
Which are more useful for	
determining relationships? Why?	
2	140

Similarity between organisms		
What are the different forces that can create		
similarities between organisms?		
 Why do some similarities indicate relationship while others do not? 		
Which indicate a shared evolutionary past?		
	141	
More		
What are primitive and derived characteristics?		
 Why are shared-derived characteristics most useful in determining relationships? 		
 What is the principle of parsimony and how does this apply to determining the relationships 		
amongst organisms?		
	142	
Humans		
• How are humans classified?		
 Why are we classified in this way? 		
-	143	
Managarla		
Mammals		
 What characteristics define 		
mammals?		

What are these characteristics an

adaptation for?

Questions	
Question:	
A bird's wing and a bat's wing are considered	
(homologous / analogous) structures.	
146	145
	_
Question:	
Question.	
	-
A bird's wing and a bat's wing are considered	
(homologous / analogous) structures.	
146	146
Question:	
The traits that are most useful in	
determining relationships between	
organisms are a. analogous traits	
b. homologous traits	
c. primitive homologous traits	
d. derived homologous traits	
e. shared derived homologous traits	147
i e	
Overtions	
Question:	
 The traits that are most useful in 	
determining relationships between organisms are	
a. analogous traits	
b. homologous traits	
c. primitive homologous traits	
d. derived homologous traits	

e. shared derived homologous traits

Question:	
(Cladogenesis / anagenesis) is the process	
of a lineage changing significantly over time from one form to another, perhaps from one	
species to another.	
int.	149
Question:	
(Cladogenesis / anagenesis) is the process	
of a lineage changing significantly over time from one form to another, perhaps from one	
species to another.	
- Na	150
	7
Question:	
Analagous structures are those that are similar between two organisms due to	
shared (form / function).	
	151
	J
	7
Question:	-
Question	
Analagous structures are those that are similar between two organisms due to	
shared (form / function).	

Question:	
Shared-derived characteristics are most useful for determining relationships among	
organisms because of the principle of , which says that the fewer	
evolutionary steps, the more likely the tree.	
160	153
Oversiana	
Question:	
Shared-derived characteristics are most useful for determining relationships among	
organisms because of the principle of PARSIMONY, which says that the fewer	
evolutionary steps, the more likely the tree.	
	154
154	104
Question:	
Name 3 defining mammalian traits.	
185	155
Question:	
Name 3 defining mammalian traits.	
There a seeing manneau care.	
hair, mammary glands, homeothermy	
164	156

10 - Mar 2000 - 100000	
Question:	
Mammalian traits show an adaptation for	
167	157
Question:	
Question.	-
Mammalian traits show an adaptation for ADAPTABILITY	
158	158
	7
Question:	
1110100	
True / False	
Humans don't make very good primates because we have the specialized skeleton for	
bipedalism.	
	-
100	159
-	J 123
]
Question:	
True / False Humans don't make very good primates	
because we have the specialized skeleton for bipedalism.	

The correct way to write the human genus and species is:

- a. Homo sapien
- b. homo sapiens
- c. Homo sopiens
- d. sapiens sapiens
- e. Homo sopien

16

161

Question:

The correct way to write the human genus and species is:

- a. Homo sapien
- b. homo sapiens
- c. Homo sopiens
- d. satviens satviens
- e. Homo sopien

160

162

Primate Characteristics

- What characteristics define primates?
- · What are they an adaptation for?
- What was the likely early primate adaptation?

163

Question:

- Which of the following is not a primate characteristic?
 - a. emphasis on vision
 - specialization for quadrupedal locomotion
 - c. tendency towards omnivory
 - d. expanded infancy and childhood
 - e. bigger brains than many other mammals

1	6	4
1	6	4

- Which of the following is not a primate characteristic?
 - a. emphasis on vision
 - specialization for quadrupedal locomotion
 - c. tendency towards omnivory
 - d. expanded infancy and childhood
 - e. bigger brains than many other mammals

165

Question:

T/F

Primates show an overall trend for dietary specialization, as exemplified by the tooth combs seen in the lemurs and lorises.

186

166

Question:

T/F

Primates show an overall trend for dietary specialization, as exemplified by the tooth combs seen in the lemurs and lorises.

167

167

Question:

- Primates probably resulted in the mammalian adaptive radiation as an adaptation for a
 - a. insectivorous life
 - b. terrestrial herbivorous life
 - c. arboreal life
 - d. nocturnal life
 - e. predatorial life

- Primates probably resulted in the mammalian adaptive radiation as an adaptation for a
 - a. insectivorous life
 - b. terrestrial herbivorous life
 - c. arboreal life
 - d. nocturnal life
 - e. predatorial life

188

169

Primates and Primate Evolution

- Who are the modern primates?
- · What are their two major divisions?
- · What is the geographic range of living primates?
- · What is the size range of living primates?

170

Primate evolution

- When did primates first appear in the fossil record?
- What are the epochs of the Cenozoic and what kinds of primates are found in each epic?
 - What do we find in the Paleocene and where?
 - What do we find in the Eocene and where?

171

Eocene primates

- · What kinds of primates are found in the Eocene?
- What did they look like? What kind of environment did they live in?
- What "grade" of primates are found in the Eccene!
- Are these primates of the Strepsirrhine or Haplorhine lineage?

Strepsirrhines

- · What are the characteristics that define the strepsirrhines?
 - · Which are primitive to primates and which are derived?
- What are the different kinds of strepsirrhines? How do they differ?

173

Lemurs

- · Where do they live?
- · How do they live?
- · What are their identifying characteristics?

174

Lorises

- · Where do they live?
- · How do they live?
- What are their identifying characteristics?

Tarsier

- · Why is the Tarsier considered both a Haplorhine and a Prosimian?
- · What features align it with each group?

-			
175			
_			
_			
_			
_			
_			
176			

0		
Question:		
The first true primates are found in the		
a. Paleocene b. Eocene		
c. Oligocene		
d. Jurassic		
- C. J 2.2.		
199	177	
Question:		
The first true primates are found in the a. Paleocene		
b. Eocene		
c. Oligocene		
d. Jurassic		
in	178	
Question:		
 The rapid diversification of a group into many different species or types due to the 		
availability of many different ecological niches is called		
micres is cared		
179	179	
Question:		_
Question.		
The rapid diversification of a group into		
many different species or types due to the availability of many different ecological		
niches is called adaptive radiation.		

...

- Modern primates live on all the continents EXCEPT:
 - A. Europe
 - . B. North America
 - · C. Australia
 - . D. All of the above
 - . E. B and C only

.

181

Question:

- Modern primates live on all the continents EXCEPT:
 - A. Europe
 - B. North America
 - C. Australia
 - · D. All of the above
 - . E. B and C only

160

182

Question:

- The two major divisions of the primates, the two suborders, are
 - · A. Catarrhini and Platyrrhini
 - B. Strepsirrhini and Haplorhini
 - . C. Old World and New World
 - D. Lemuriformes and Simiiformes
 - . E. Humans and all the rest

183

Question:

- The two major divisions of the primates, the two suborders, are
 - · A. Catarrhini and Platyrrhini
 - . B. Strepsirrhini and Haplorhini
 - . C. Old World and New World
 - . D. Lemuriformes and Simiiformes
 - . E. Humans and all the rest

| 1

-			
-			
-			
-			
184			

Question:		
The primates of the Eocene are best		
described as grade primates.		
145	185	
Question:		
The primates of the Eocene are best		
described as prosimian grade primates.		
196	186	
	_	
Question:		
GMAPA THE TRAINER		
 Of the Strepsirrhines, only the (lemurs / lorises) are sometimes diurnal. 		
(and 3 resides) are sometimes desired		
**	187	
	1	
0		
Question:		
92509 ES 55 20 ES		
 Of the Strepsirrhines, only the (lemurs / lorises) are sometimes diurnal. 		

- Characteristics that define the strepsirrhines include
 - · A. arboreality
 - · B. prehensile tails
 - · C. tooth comb
 - · D. nails on all digits
 - . E. C and D both

189

Question:

- Characteristics that define the strepsirhines include
 - · A. arboreality
 - · B. prehensile tails
 - · C. tooth comb
 - · D. nails on all digits
 - . E. C and D both

190

Question:

- One characteristic that shows that tarsiers are evolutionarily closer to monkeys and apes than to lemurs and lorises is
 - · A. a moist rhinarium
 - · B. a tooth comb
 - C. post orbital closure
 - D. tapeta lucetum
 - E. retention of a claw.

191

Question:

- One characteristic that shows that tarsiers are evolutionarily closer to monkeys and apes than to lemurs and lorises is
 - · A. a moist rhinarium
 - B. a tooth comb
 - · C. post orbital closure
 - D. tapeta lucetum
 - . E. retention of a claw.

_				
o —				
_				
_				
_				
_				
_				
_				
1				
_				
_				
_				
_				
_				
_				
_				
_				
2				

	193
(%)	193