DNA

- What is DNA?
 - What is its shape? Why is the shape important?
- · Where is it found?
- What does it do?

DNA

- What bases make up DNA?
- · How do they pair?
- What does the sequence of bases do?

2

Proteins

- · What is a protein?
- · What are amino acids?
- · How do they make proteins?
- How does DNA make proteins?

8

Protein Synthesis

- · What are transcription and translation?
- · How does RNA differ from DNA
- What is the difference between mRNA and tRNA?
- How does the ribosome help?
- How is the protein made?

.

This is how a protein is created --But this is only the start

We don't just have one copy of a gene, we have two, and we have to know

- *How do these two copies combine to create a phenotype? *How do we get our two copies?
- *How is variation produced?

×

3 Part question

- How does the genetic code create a characteristic?
- How come we resemble our parents? That is, how is our heritable information passed from generation to generation?
- Where does variation in the code come from?

é

Example: Sickle Cell | Formation | Format

Example: Blood Type

- ABO
- A creates an antigen on the blood, which will result in antibodies against B
- B creates an antigen on the blood, which will create antibodies against A
- O creates no antigens but will create antibodies against both
- AB creates both antigens, and therefore no antibodies

1

Example: Eye Color

- actually created by pigment genes at at least 3 locales
- Blue eyes are due to the lack of other pigmentation
- One allele makes nothing, others make pigmentation.

4

Mendel 1822-1884

Mendel

- Inferred mechanism of heredity from patterns
- Inferred GENES (or particles of inheritance) from phenotypic rations
- Gave the idea of DOMINANCE and RECESSIVENESS

BUT HOW?

Conclusions

- · Traits can be hidden in an individual
 - The character that is hidden is called recessive
 - · Character shown is called dominant
- Those tall plants of the FI generation must be hiding the "short" - not the same as the tall of the parental generation.

Law of Segregation

- Each person carries two particles of inheritance for each trait
- These separate (segregate) during reproduction, one copy being passed on to the next generation

2 trait punnett square ŧY. TTYY TTYy TtYY TtYy TY TtYy Ty TTYy Ttyy TtYY ttYY TtYy ttYy TtYy Ttyy ttYy

Phenotypes: 9 TY, 3 Ty, 3 tY, 1 ty

Law of Independent Assortment

- the units which govern one trait assort independently of the units that govern other traits
- true of chromosomes mostly true on loci, due to crossing over

Human Mendelian Inheritance?

- most human traits more complicated than all that
- · but a few are inherited this way
- Online Mendelian Inheritance in Man (OMIM)

Sickle cell HbA HbS HbA AS HbS AS SS HbA = Dominant, HbS = Recessive

Mendelian Traits

- · Sickle cell (R)
- · Cystic Fibrosis (R)
- · Tay-Sachs disease (R)
- · Phenylketonuria (R)
- Huntington disease (D)
- · Achondroplasia (D)
- · Hemophilia (R)

Mendelian Traits

 Hitchhiker's thumb (recessive)

 Earlobe attachment (recessive)

Other Simple Mendelian Traits

 Tongue rolling (dominant)

Darwin's Tubercle (dominant)

Other Simple Mendelian Traits

 Mid-digital hair (dominant)

 Hand clasping (left over dominant)

Heritability a 3 Part question

- How come we resemble our parents? That is, how is our heritable information passed from generation to generation?
- How does the genetic code create a characteristic?
- Where does variation in the code come from?

14