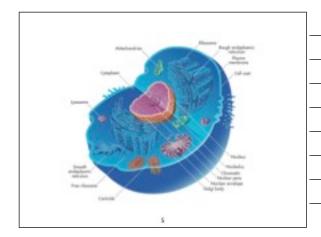
Can anything evolve by Natural Selection?

Heredity

- What is a phenotype? What is a genotype?
- How are phenotypes created?
- What are the relative influences of genetics and environment on phenotype?

2

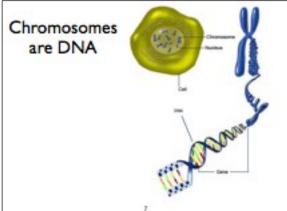
DNA


- What is DNA?
 - What is its shape? Why is the shape important?
- · Where is it found?
- What does it do?

8

3 Part question

- How does the genetic code create a characteristic?
- How come we resemble our parents? That is, how is our heritable information passed from generation to generation?
- Where does variation in the code come from?


4

Human DNA in Chromosomes

6

DNA

- A SEGMENT OF DNA is a particle of inheritance
- All scrunched up in nucleus supercoiled into tiny packs
- · Forms the Chromosomes
- Really long! Haploid genome of one gamete = about 1 meter
- Double helix

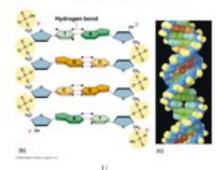
ı

9

DNA made of 4 bases

Adenine

Guanine

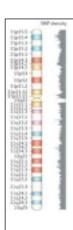

Thymine

A-T G-C

10

DNA structure

Particle of Inheritance?


- · A segment of a chromosome
- A segment of DNA
- · A series of bases
- A gene
- An allele
- A segment of DNA with a particular ich

ı

DNA's Job

- DNA carries the code for making proteins
- Proteins are the building blocks of the body
- What proteins you make or don't make determines your phenotype
- Different sequences can create different proteins and therefore different phenotypes

13

Example: Sickle Cell Anemia

- part of 11p15.5 makes hemoglobin
- "normal" I I p I 5.5 makes "normal" hemoglobin
- sickle cell results from a different sequence

Examples

- Provide structural support (collagen)
- Regulate metabolic processes (digestion, body temperature, melanin production, etc.)
- Influence gene expression: hormones, enzymes
- Regulatory genes

15

Proteins

- Made of amino acids
- 20 amino acids
- Different combinations and lengths for different proteins
- Insulin = 51 AA long; Hb = 574 AA

H

How does DNA make a protein?

Has to give the instructions on how to build the amino acid chain

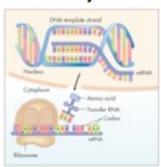
Gives the order of amino acids

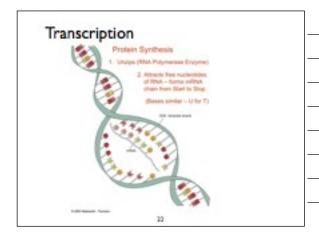
Sequence of bases gives sequence of amino acids

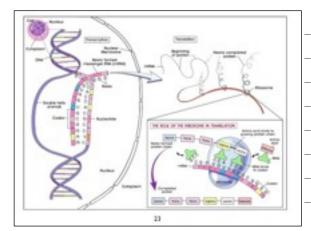
12

ARTHO ACTO HEMBOL	AMERICA SICIRI	DIATEPLEY.	MRAN CORNER
a contract	River	06A,006.00T-090	600,600,60A,600
in.	Aginine	GCA-GCG, GCT, GCC, TCT, TCC	CEEL COC, CEA, CEEL, AGA, AGE
Seal Control	Aspengine	TTA, TTG	AMI, AMI
in the	Asperts and	COLCIG	GYE, GAC
Ow	Cytetion	ACK ACC	DOU, DOC
Elle	Chessia	WITE-GITC	CM, CM
Oh:	Chinanic aid	CTLCTC	GNA, GRG
Or:	Clysine .	CCA, CCG, CCT, CCC	600, 600, 00A, 600
Na	Histoine	GTA, GTG	OVE, OAC
Se .	Sedestine	TAA, TAG, TAT	ACU, ACK, ACA
Les	Lewise	ART, NAC, GAR, GAE, GAE, GAE	DUA, DUG, CDD, CDC, CUA, COG-
Los	Looine	TYT, TIN	MAN, MAG
Men	Moltonine	TAC	ADV
Plur	Phirmphilanine	AAA, AND	USS, DUC
Pen	Proline	GGA, GGG, GGT, GGC	000,000,000,000
See .	Serior	AGA, AGG, AGT, AGC, TCA, TOG	UCU, DOC, UCA, DOG, AGU, AGC
The	Threinine .	TGA, TGG, TET, TGC	MCULACK, NCA, NCG
Top	Topophia:	ACC	000
Tie	Emodesi.	ATK-800	UAU, EAC
W.	Tialow -	CAS, CAG, CAT, CAC	GET, GEC, GUA, GEG
Terminating triplets		ATT, STC, SCT	DIAM, DIAM, DIGH.

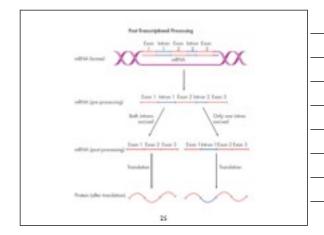
DNA is

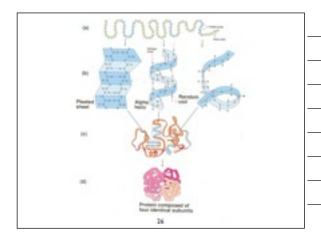

- Universal
- Triplet
- Redundant

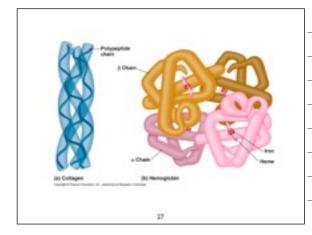

15


Protein synthesis

- TRANSCRIPTION the copying of DNA by mRNA
- TRANSLATION the meeting of mRNA and tRNA to translate the base sequence into a chain of amino acids


Protein Synthesis





Translation 88

3 Part question

- How does the genetic code create a characteristic?
- Where does variation in the code come from?
- How come we resemble our parents? That is, how is our heritable information passed from generation to generation?

This is how a protein is created --But this is only the start

We don't just have one copy of a gene, we have two, and we have to know

- *How do these two copies combine to create a phenotype? *How do we get our two copies?
- *How is variation produced?

25

Example: Sickle Cell

Example: Blood Type

- ABO
- A creates an antigen on the blood, which will result in antibodies against B
- B creates an antigen on the blood, which will create antibodies against A
- O creates no antigens but will create antibodies against both
- AB creates both antigens, and therefore no antibodies

1

Example: Eye Color

- actually created by pigment genes at at least 3 locales
- Blue eyes are due to the lack of other pigmentation
- One allele makes nothing, others make pigmentation.

10