Interval Estimation and Hypothesis Testing	
Chapter 3	
<u>Oliapter o</u>	
Prepared by Vera Tabakova, East Carolina University	
Chapter 3:	
Interval Estimation and Hypothesis Testing	
■ 3.1 Interval Estimation	
■ 3.2 Hypothesis Tests	
■ 3.3 Rejection Regions for Specific Alternatives	
■ 3.4 Examples of Hypothesis Tests	·
■ 3.5 The <i>p</i> -value	-
Principles of Econometrics, 3rd Edition Slide 3-2	
3.1 Interval Estimation	
Assumptions of the Simple Linear Regression Model	
The state of the s	·
•SR1. $y = \beta_1 + \beta_2 x + e$ •SR2. $E(e) = 0 \Leftrightarrow E(y) = \beta_1 + \beta_2 x$	
*SR3. $var(e) = \sigma^2 = var(y)$ *SR4. $cov(e_i, e_j) = cov(y_i, y_j) = 0$	
*SR5. The variable x is not random, and must take at least two different values. *SR6. (optional) The values of e are normally distributed about their mean $e \sim N(0, \sigma^2)$	

3.1.1 The t-distribution

• The normal distribution of b_2 , the least squares estimator of β , is

$$b_2 \sim N\left(\beta_2, \frac{\sigma^2}{\sum (x_i - \overline{x})^2}\right)$$

 A standardized normal random variable is obtained from b₂ by subtracting its mean and dividing by its standard deviation:

$$Z = \frac{b_2 - \beta_2}{\sqrt{\sigma^2 / \sum (x_i - \bar{x})^2}} \sim N(0, 1)$$
(3.1)

• The standardized random variable Z is normally distributed with mean 0 and variance 1

Principles of Econometrics. 3rd Edition

3.1.1 The t-distribution

$$P(-1.96 \le Z \le 1.96) = .95$$

$$P\left(-1.96 \le \frac{b_2 - \beta_2}{\sqrt{\sigma^2 / \sum (x_i - \overline{x})^2}} \le 1.96\right) = .95$$

$$P\left(b_2 - 1.96\sqrt{\sigma^2/\sum(x_i - \bar{x})^2} \le \beta_2 \le b_2 + 1.96\sqrt{\sigma^2/\sum(x_i - \bar{x})^2}\right) = .95$$

This defines an interval that has probability .95 of containing the parameter β_2 .

Principles of Econometrics, 3rd Edition

Slide 3-5

3.1.1 The t-distribution

- •The two endpoints $\left(b_2 \pm 1.96 \sqrt{\sigma^2 / \sum (x_i \overline{x})^2}\right)$ provide an interval estimator.
- $\bullet In$ repeated sampling 95% of the intervals constructed this way will contain the true value of the parameter $\beta_2.$
- •This easy derivation of an interval estimator is based on the assumption SR6 and that we know the variance of the error term σ^2 .

Principles of Econometrics, 3rd Edition

3.1.1 The t-distribution

• Replacing σ^2 with $\hat{\sigma}^2$ creates a random variable t:

$$t = \frac{b_2 - \beta_2}{\sqrt{\hat{\sigma}^2 / \sum (x_i - \overline{x})^2}} = \frac{b_2 - \beta_2}{\sqrt{\text{var}(b_2)}} = \frac{b_2 - \beta_2}{\text{se}(b_2)} \sim t_{(N-2)}$$
(3.2)

The ratio t = (b₂ −β₂)/se(b₂) has a t-distribution with (N − 2) degrees of freedom, which we denote as t ~ t_(N-2).

Principles of Econometrics, 3rd Edition

Slide 3-7

3.1.1 The t-distribution

 In general we can say, if assumptions SR1-SR6 hold in the simple linear regression model, then

$$t = \frac{b_k - \beta_k}{\text{se}(b_k)} \sim t_{(N-2)} \text{ for } k = 1,2$$
(3.3)

- The *t*-distribution is a bell shaped curve centered at zero.
- It looks like the standard normal distribution, except it is more spread out, with a larger variance and thicker tails.
- The shape of the t-distribution is controlled by a single parameter called the degrees
 of freedom, often abbreviated as df.

Principles of Econometrics, 3rd Edition

Slide 3-8

3.1.2 Obtaining Interval Estimates

• We can find a "critical value" from a t-distribution such that

$$P(t \ge t_c) = P(t \le -t_c) = \alpha/2$$

where α is a probability often taken to be $\alpha = .01$ or $\alpha = .05$.

■ The critical value t_c for degrees of freedom m is the percentile value $t_{(1-\alpha/2,m)}$.

Principles of Econometrics, 3rd Edition

3.1.2 Obtaining Interval Estimates

Figure 3.1 Critical Values from a t-distribution

Principles of Econometrics, 3rd Edition

Slide 3-10

3.1.2 Obtaining Interval Estimates

- Each shaded "tail" area contains $\alpha/2$ of the probability, so that $1-\alpha$ of the probability is contained in the center portion.
- Consequently, we can make the probability statement

$$P(-t_c \le t \le t_c) = 1 - \alpha$$

(3.4)

$$P[-t_c \le \frac{b_k - \beta_k}{\operatorname{se}(b_k)} \le t_c] = 1 - \alpha$$

$$P[b_k - t_c \operatorname{se}(b_k) \le \beta_k \le b_k + t_c \operatorname{se}(b_k)] = 1 - \alpha$$
(3.5)

Principles of Econometrics, 3rd Edition

Slide 3-

3.1.3 An Illustration

• For the food expenditure data

$$P[b_2 - 2.024 \text{se}(b_2) \le \beta_2 \le b_2 + 2.024 \text{se}(b_2)] = .95$$
 (3.6)

- The critical value $t_c = 2.024$, which is appropriate for $\alpha = .05$ and 38 degrees of feedow
- To construct an interval estimate for β_2 we use the least squares estimate b_2 = 10.21 and its standard error

$$se(b_2) = \sqrt{\widehat{var}(b_2)} = \sqrt{4.38} = 2.09$$

Principles of Econometrics, 3rd Edition

_	-	_	_				_
			Δn	ш	100.0	District of	

• A "95% confidence interval estimate" for β₂:

 $b_2 \pm t_c \operatorname{se}(b_2) = 10.21 \pm 2.024(2.09) = [5.97, 14.45]$

When the procedure we used is applied to many random samples of data from the same population, then 95% of all the interval estimates constructed using this procedure will contain the true parameter.

Principles of Econometrics, 3rd Edition

Slide 3-13

3.1.4 The Repeated Sampling Context

Table 3.1	Least Squar	es Estimates fr	om 10 Randor	n Samples	
Sample	b_1	$sc(b_1)$	b_2	$sc(b_2)$	$\hat{\sigma}^2$
1	131.69	40.58	6.48	1.96	7002.85
2	57.25	33.13	10.88	1.60	4668.63
3	103.91	37.22	8.14	1.79	5891.75
4	46.50	33.33	11.90	1.61	4722.58
5	84.23	41.15	9.29	1.98	7200.16
6	26.63	45.78	13.55	2.21	8911.43
7	64.21	32.03	10.93	1.54	4362.12
8	79.66	29.87	9.76	1.44	3793.83
9	97.30	29.14	8.05	1.41	3610.20
10	95.96	37.18	7.77	1.79	5878.71

Principles of Econometrics, 3rd Edition

Slide 3-14

3.1.4 The Repeated Sampling Context

Table 3.	2 Interval Estimate	Interval Estimates from 10 Random Samples					
Sample	$b_1 - t_c \mathrm{sc}(b_1)$	$b_1 + t_c sc(b_1)$	$b_2 - t_c \mathrm{sc}(b_2)$	$b_2 + t_c sc(b_2)$			
1	49.54	213.85	2.52	10.44			
2	-9.83	124.32	7.65	14.12			
3	28.56	179.26	4.51	11.77			
4	-20.96	113.97	8.65	15.15			
5	0.93	167.53	5.27	13.30			
6	-66.04	119.30	9.08	18.02			
7	-0.63	129.05	7.81	14.06			
8	19.19	140.13	6.85	12.68			
9	38.32	156.29	5.21	10.89			
10	20.69	171.23	4.14	11.40			

Principles of Econometrics, 3rd Edition

3.2 Hypothesis Tests

Components of Hypothesis Tests

- 1. A null hypothesis, H_0
- 2. An alternative hypothesis, H_1
- 3. A test statistic
- 4. A rejection region
- 5. A conclusion

Principles of Econometrics, 3rd Edition

Cl: J., 2 14

3.2 Hypothesis Tests

■ The Null Hypothesis

The null hypothesis, which is denoted H_0 (H-naught), specifies a value for a regression parameter

The null hypothesis is stated H_0 : $\beta_k = c$, where c is a constant, and is an important value in the context of a specific regression model.

Principles of Econometrics, 3rd Edition

Slide 3-1

3.2 Hypothesis Tests

• The Alternative Hypothesis

Paired with every null hypothesis is a logical alternative hypothesis, H_1 , that we will accept if the null hypothesis is rejected.

For the null hypothesis H_0 : $\beta_k = c$ the three possible alternative hypotheses are:

- $\bullet \quad H_1: \beta_k > c$
- $\blacksquare H_1: \beta_k < c$
- $\qquad H_1: \beta_k \neq c$

Principles of Econometrics, 3rd Edition

3.2 Hypothesis Tests

■ The Test Statistic

$$t = (b_k - \beta_k)/\operatorname{se}(b_k) \sim t_{(N-2)}$$

• If the null hypothesis $H_0: \beta_k = c$ is true, then we can substitute c for β_k and it follows that

$$t = \frac{b_k - c}{\operatorname{se}(b_k)} \sim t_{(N-2)}$$

If the null hypothesis is *not true*, then the *t*-statistic in (3.7) does *not* have a *t*-distribution with N-2 degrees of freedom.

Principles of Econometrics, 3rd Edition

Cl: J. 2 10

(3.7)

3.2 Hypothesis Tests

■ The Rejection Region

The rejection region depends on the form of the alternative. It is the range of values of the test statistic that leads to *rejection* of the null hypothesis. It is possible to construct a rejection region only if we have:

- a test statistic whose distribution is known when the null hypothesis is true
- an alternative hypothesis
- · a level of significance

The level of significance α is usually chosen to be .01, .05 or .10.

Principles of Econometrics, 3rd Edition

Slide 3-2

3.2 Hypothesis Tests

A Conclusion

We make a correct decision if:

- The null hypothesis is false and we decide to reject it.
- The null hypothesis is true and we decide not to reject it.

Our decision is incorrect if:

- The null hypothesis is *true* and we decide to *reject* it (a Type I error)
- The null hypothesis is *false* and we decide *not* to reject it (a Type II error)

Principles of Econometrics, 3rd Edition

3.3 Rejection Regions for Specific Alternatives

- 3.3.1. One-tail Tests with Alternative "Greater Than" (>)
- 3.3.2. One-tail Tests with Alternative "Less Than" (<)
- 3.3.3. Two-tail Tests with Alternative "Not Equal To" (≠)

Principles of Econometrics, 3rd Edition

CI: 4.. 2 22

3.3.1 One-tail Tests with Alternative "Greater Than" (>)

Figure 3.2 Rejection region for a one-tail test of H_0 : $\beta_k = c$ against H_1 : $\beta_k > c$

Principles of Econometrics, 3rd Edition

Slide 3-23

3.3.1 One-tail Tests with Alternative "Greater Than" (>)

When testing the null hypothesis $H_0: \beta_k = c$ against the alternative hypothesis $H_1: \beta_k > c$, reject the null hypothesis and accept the alternative hypothesis if $t \ge t_{(1-\alpha,N-2)}$.

Principles of Econometrics, 3rd Edition

3.3.2 One-tail Tests with Alternative "Less Than" (<)

When testing the null hypothesis $H_0: \beta_k = c$ against the alternative hypothesis $H_1: \beta_k < c$, reject the null hypothesis and accept the alternative hypothesis if $t \le t_{(\alpha,N-2)}$.

Principles of Econometrics, 3rd Edition

Slide 3-26

3.3.3 Two-tail Tests with Alternative "Not Equal To" (\neq) Reject $H_0: \beta_k = c$ Accept $H_1: \beta_k \neq c$ $H_0: \beta_k = c$ Accept $H_1: \beta_k \neq c$ Figure 3.4 The rejection region for a two-tail test of $H_0: \beta_k = c$ against $H_1: \beta_k \neq c$ Principles of Econometrics. 3rd Edition Slide 3-27

3.3.3 Two-tall Tests with Alternative "Not Equal To" (≠)

When testing the null hypothesis $H_0: \beta_k = c$ against the alternative hypothesis $H_1: \beta_k \neq c$, reject the null hypothesis and accept the alternative hypothesis if $t \leq t_{(a/2,N-2)}$ or if $t \geq t_{(1-a/2,N-2)}$.

Principles of Econometrics, 3rd Edition

Slide 3-28

3.4 Examples of Hypothesis Tests

STEP-BY-STEP PROCEDURE FOR TESTING HYPOTHESES

- 1. Determine the null and alternative hypotheses.
- Specify the test statistic and its distribution if the null hypothesis is
 true.
- 3. Select $\boldsymbol{\alpha}$ and determine the rejection region.
- 4. Calculate the sample value of the test statistic.
- 5. State your conclusion.

Principles of Econometrics, 3rd Edition

Slide 3-29

3.4.1 Right-tail Tests

- 3.4.1a One-tail Test of Significance
 - 1. The null hypothesis is $H_0: \beta_2 = 0$. The alternative hypothesis is $H_1: \beta_2 > 0$.
- 2. The test statistic is (3.7). In this case c = 0, so $t = b_2/\text{se}(b_2) \sim t_{(N-2)}$ if the null hypothesis is true.
- 3. Let us select $\alpha = .05$. The critical value for the right-tail rejection region is the 95th percentile of the *t*-distribution with N-2=38 degrees of freedom, $t_{(95,38)}=1.686$. Thus we will reject the null hypothesis if the calculated value of $t \ge 1.686$. If t < 1.686, we will not reject the null hypothesis.

Principles of Econometrics, 3rd Edition

3.4.1 Right-tall Tests

4. Using the food expenditure data, we found that $b_2 = 10.21$ with standard error $se(b_2) = 2.09$. The value of the test statistic is

$$t = \frac{b_2}{\text{se}(b_2)} = \frac{10.21}{2.09} = 4.88$$

5. Since t = 4.88 > 1.686, we reject the null hypothesis that $\beta_2 = 0$ and accept the alternative that $\beta_2 > 0$. That is, we reject the hypothesis that there is no relationship between income and food expenditure, and conclude that there is a *statistically significant* positive relationship between household income and food expenditure.

Principles of Econometrics, 3rd Edition

Slide 3-31

3.4.1 Right-tail Tests

- 3.4.1b One-tail Test of an Economic Hypothesis
 - 1. The null hypothesis is $H_0: \beta_2 \le 5.5$. The alternative hypothesis is $H_1: \beta_2 > 5.5$.
- 2. The test statistic $t = (b_2 5.5)/\text{se}(b_2) \sim t_{(N-2)}$ if the null hypothesis is true.
- 3. Let us select $\alpha = .01$. The critical value for the right-tail rejection region is the 99th percentile of the *t*-distribution with N-2=38 degrees of freedom, $t_{(99.38)} = 2.429$. We will reject the null hypothesis if the calculated value of $t \ge 2.429$. If t < 2.429, we will not reject the null hypothesis.

Principles of Econometrics, 3rd Edition

Slide 3-32

3.4.1 Right-tail Tests

4. Using the food expenditure data, $b_2 = 10.21$ with standard error $se(b_2) = 2.09$. The value of the test statistic is

$$t = \frac{b_2 - 5.5}{\text{se}(b_2)} = \frac{10.21 - 5.5}{2.09} = 2.25$$

5. Since t = 2.25 < 2.429 we do not reject the null hypothesis that $\beta_2 \le 5.5$. We are *not* able to conclude that the new supermarket will be profitable and will not begin construction.

Principles of Econometrics, 3rd Edition

3.4.2 Left-tall Tests

- 1. The null hypothesis is $H_0: \beta_2 \ge 15$. The alternative hypothesis is $H_1: \beta_2 < 15$.
- 2. The test statistic $t = (b_2 15)/\text{se}(b_2) \sim t_{(N-2)}$ if the null hypothesis is true.
- 3. Let us select $\alpha=.05$. The critical value for the left-tail rejection region is the 5th percentile of the *t*-distribution with N-2=38 degrees of freedom, $t_{(05,38)}=-1.686$. We will reject the null hypothesis if the calculated value of $t \le -1.686$. If t > -1.686, we will not reject the null hypothesis.

Principles of Econometrics, 3rd Edition

Slide 3-34

3.4.2 Left-tail Tests

4. Using the food expenditure data, $b_2 = 10.21$ with standard error $se(b_2) = 2.09$. The value of the test statistic is

$$t = \frac{b_2 - 15}{\text{se}(b_2)} = \frac{10.21 - 15}{2.09} = -2.29$$

5. Since t = -2.29 < -1.686 we reject the null hypothesis that $\beta_2 \ge 15$ and accept the alternative that $\beta_2 < 15$. We conclude that households spend less than \$15 from each additional \$100 income on food.

Principles of Econometrics, 3rd Edition

Slide 3-35

3.4.3 Two-tail Tests

- 3.4.3a Two-tail Test of an Economic Hypothesis
 - 1. The null hypothesis is $H_0: \beta_2 = 7.5$. The alternative hypothesis is $H_1: \beta_2 \neq 7.5$.
 - 2. The test statistic $t = (b_2 7.5)/\text{se}(b_2) \sim t_{(N-2)}$ if the null hypothesis is true.
- 3. Let us select $\alpha=.05$. The critical values for this two-tail test are the 2.5-percentile $t_{(.025,38)}=-2.024$ and the 97.5-percentile $t_{(.975,38)}=2.024$. Thus we will reject the null hypothesis if the calculated value of $t \ge 2.024$ or if $t \le -2.024$. If -2.024 < t < 2.024, we will not reject the null hypothesis.

Principles of Econometrics, 3rd Edition

3.4.3 Two-tall Tests

4. Using the food expenditure data, $b_2 = 10.21$ with standard error $se(b_2) = 2.09$. The value of the test statistic is

$$t = \frac{b_2 - 7.5}{\text{se}(b_2)} = \frac{10.21 - 7.5}{2.09} = 1.29$$

5. Since -2.204 < t = 1.29 < 2.204 we do not reject the null hypothesis that $\beta_2 = 7.5$. The sample data are consistent with the conjecture households will spend an additional \$7.50 per additional \$100 income on food.

Principles of Econometrics, 3rd Edition

Slide 3-37

3.4.3 Two-tail Tests

- 3.4.3b Two-tail Test of Significance
 - 1. The null hypothesis is $H_0: \beta_2 = 0$. The alternative hypothesis is $H_1: \beta_2 \neq 0$.
- 2. The test statistic $t = b_2/\operatorname{se}(b_2) \sim t_{(N-2)}$ if the null hypothesis is true.
- 3. Let us select $\alpha=.05$. The critical values for this two-tail test are the 2.5-percentile $t_{(.025,38)}=-2.024$ and the 97.5-percentile $t_{(.975,38)}=2.024$. Thus we will reject the null hypothesis if the calculated value of $t \geq 2.024$ or if $t \leq -2.024$. If -2.024 < t < 2.024, we will not reject the null hypothesis.

Principles of Econometrics, 3rd Edition

Slide 3-3

3.4.3 Two-tail Tests

4. Using the food expenditure data, $b_2 = 10.21$ with standard error $se(b_2) = 2.09$. The value of the test statistic is

$$t = \frac{b_2}{\text{se}(b_2)} = \frac{10.21}{2.09} = 4.88$$

5. Since t = 4.88 > 2.204 we reject the null hypothesis that $\beta_2 = 0$ and conclude that there is a statistically significant relationship between income and food expenditure.

Principles of Econometrics, 3rd Edition

2	4	2	Two	الحف	Tee	4-
	8 6.		1 50/13		1973	L FC

Coefficient	Variable	Std. Error	t-Statistic	Prob.
83.41600	С	43.41016	1.921578	0.0622
10 20964	INCOME	2 093264	4 877381	0.0000

Principles of Econometrics, 3rd Edition

Slide 3-40

3.5 The p-Value

p-value rule: Reject the null hypothesis when the *p*-value is less than, or equal to, the level of significance α . That is, if $p \le \alpha$ then reject H_0 . If $p > \alpha$ then do not reject H_0 .

Principles of Econometrics, 3rd Edition

Slide 3-41

3.5 The p-Value

If t is the calculated value of the t-statistic, then:

- if H_1 : $\beta_K > c$, p = probability to the right of t
- if H_1 : $\beta_K < c$, p = probability to the left of t
- if H_1 : $\beta_K \neq c$, $p = \underline{\text{sum}}$ of probabilities to the right of |t| and to the left of -|t|

Principles of Econometrics, 3rd Edition

Slide 3-4.

3.5.1 p-value for a Right-tail Test

Recall section 3.4.1b:

• The null hypothesis is H_0 : $\beta_2 \le 5.5$. The alternative hypothesis is H_1 : $\beta_2 > 5.5$.

$$t = \frac{b_2 - 5.5}{\text{se}(b_2)} = \frac{10.21 - 5.5}{2.09} = 2.25$$

• If $F_X(x)$ is the *cdf* for a random variable X, then for any value x=c the cumulative probability is $P[X \le c] = F_X(c)$.

•
$$p = P[t_{(38)} \ge 2.25] = 1 - P[t_{(38)} \le 2.25] = 1 - .9848 = .0152$$

Principles of Econometrics, 3rd Edition

Slide 3-43

3.5.1 p-value for a Right-tail Test

Figure 3.5 The p-value for a right tail test

Principles of Econometrics, 3rd Edition

Slide 3-44

3.5.2 p-value for a Left-tail Test

Recall section 3.4.2:

• The null hypothesis is H_0 : $\beta_2 \ge 15$. The alternative hypothesis is H_1 : $\beta_2 < 15$.

$$t = \frac{b_2 - 15}{\text{se}(b_2)} = \frac{10.21 - 15}{2.09} = -2.29$$

 $P[t_{(38)} \le -2.29] = .0139$

Principles of Econometrics, 3rd Edition

3.5.2 p-value for a Left-tall Test

Figure 3.6 The p-value for a left tail test

Principles of Econometrics, 3rd Edition

Slide 3-46

3.5.3 p-value for a Two-tail Test

Recall section 3.4.3a:

• The null hypothesis is H_0 : $\beta_2 = 7.5$. The alternative hypothesis is H_1 : $\beta_2 \neq 7.5$.

$$t = \frac{b_2 - 7.5}{\text{se}(b_2)} = \frac{10.21 - 7.5}{2.09} = 1.29$$

• $p = P[t_{(38)} \ge 1.29] + P[t_{(38)} \le -1.29] = .2033$

Principles of Econometrics, 3rd Edition

Slide 3-47

3.5.3 p-value for a Two-tail Test

Figure 3.7 The p-value for a two-tail test

Principles of Econometrics, 3rd Edition

3.5.4 p-value for a Two-tail Test of Significance

Recall section 3.4.3b:

• The null hypothesis is H_0 : $\beta_2 = 0$. The alternative hypothesis is H_1 : $\beta_2 \neq 0$

 $p = P \left[t_{(38)} \ge 4.88 \right] + P \left[t_{(38)} \le -4.88 \right] = 0.0000$

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	83.41600	43.41016	1.921578	0.0622
INCOME	10 20964	2 093264	4 877381	0.0000

rksclydes of Economistrics, 3rd Heliton

Slide 3-49

Keywords

■ Type I error

- alternative hypothesis rejection region
- confidence intervals etest of significance critical value test statistic
- critical value test statistic degrees of freedom two-tail tests
- hypotheses
- hypothesis testing
- inference
- interval estimation level of significance
- null hypothesis
- one-tail tests
- point estimates
- probability value
- p-value

Chapter 3 Appendices

- Appendix 3A Derivation of the t-distribution
- Appendix 3B Distribution of the t-statistic under H₁

nciples of Econometrics, 3rd Edition

Appendix 3A Derivation of the *t*-distribution

$$b_2 \sim N\left(\beta_2, \frac{\sigma^2}{\sum (x_i - \overline{x})^2}\right)$$

$$Z = \frac{b_2 - \beta_2}{\sqrt{\text{var}(b_2)}} \sim N(0, 1)$$
(3A.1)

$$\sum \left(\frac{e_i}{\sigma}\right)^2 = \left(\frac{e_1}{\sigma}\right)^2 + \left(\frac{e_2}{\sigma}\right)^2 + \dots + \left(\frac{e_N}{\sigma}\right)^2 \sim \chi^2_{(N)}$$
(3A.2)

$$V = \frac{\sum \hat{e}_i^2}{\sigma^2} = \frac{(N-2)\hat{\sigma}^2}{\sigma^2}$$
 (3A.3)

Principles of Econometrics, 3rd Edition

Slide 3-52

Appendix 3A Derivation of the *t*-distribution

$$V = \frac{(N-2)\hat{\sigma}^2}{\sigma^2} \sim \chi^2_{(N-2)}$$
 (3A.4)

$$t = \frac{Z}{\sqrt{V/(N-2)}} = \frac{(b_2 - \beta_2)/\sqrt{\sigma^2/\sum (x_i - \bar{x})^2}}{\sqrt{\frac{(N-2)\hat{\sigma}^2/\sigma^2}{N-2}}}$$
(3A.5)

$$= \frac{b_2 - \beta_2}{\sqrt{\sum (x_i - \overline{x})^2}} = \frac{b_2 - \beta_2}{\sqrt{\text{var}(b_2)}} = \frac{b_2 - \beta_2}{\text{se}(b_2)} \sim t_{(N-2)}$$

Principles of Econometrics, 3rd Edition

Slide 3-5

Appendix 3B Distribution of the t-statistic under H₁

$$t = \frac{b_2 - 1}{\text{se}(b_2)} \sim t_{(N-2)}$$

$$\frac{b_2 - c}{\sqrt{\text{var}(b_2)}} \sim N\left(\frac{1 - c}{\sqrt{\text{var}(b_2)}}, 1\right)$$
(3B.1)

where
$$\operatorname{var}(b_2) = \frac{\sigma^2}{\sum (x_i - \overline{x})^2}$$

Principles of Econometrics, 3rd Edition