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Recall the Definition of the Moment of Inertia
of an Area About an Axis
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Expand and Examine Terms
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Parallel Axis Theorem
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General Form
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Centroidal Moment of Inertia
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Parallel Axis Theorem

If we know the moment of
inertia of a body about an
axis passing through its
centroid, we can calculate
the body’s moment of
inertia about any parallel
axis




Example Problem

Find the Moment
of Inertia of the of
the shaded area

7 about the x and y
h axes shown. Use
the Parallel Axis
vy 5 | Theorem.
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integration.




Moment of Inertia About Centroidal Axes
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Moment of Inertia About Centroidal Axes
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Moment of Inertia About the x Axis
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Moment of Inertia About the y Axis
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Agrees with our result
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