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Recall the Definition of the Moment of Inertia 
of an Area About an Axis
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Consider an axis x’ that 
is parallel to the x axis 
and passes through the 
centroid of the area. The 
distance between the 
two parallel axes is d

y = y' + d
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Expand and Examine Terms
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Moment of Inertia 
of the area about 
the x' axis

First moment of 
the area about the 
x' axis = 0

Area
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Parallel Axis Theorem
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Centroidal Moment of Inertia

𝐼$ = 𝐼$̅* + 𝑑(𝐴

General Form
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Parallel Axis Theorem

If we know the moment of 
inertia of a body about an 
axis passing through its 
centroid, we can calculate 
the body’s moment of 
inertia about any parallel 
axis 



x

y

Example Problem

𝑏
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Find the Moment 
of Inertia of the of 
the shaded area 
about the x and y
axes shown. Use 
the Parallel Axis 
Theorem.

Note that this we have 
already found Ix , Iy and the 
location of the centroid for 
this shape using 
integration.



Moment of Inertia About Centroidal Axes
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Use Tabulated Solution for 𝐼 ̅

𝐼$̅* =
1
36
𝑏ℎ5

𝐼6̅* =
1
36
ℎ𝑏5



Moment of Inertia About Centroidal Axes
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Moment of Inertia About the xAxis
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1
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𝐼$ =
3
36
𝑏ℎ5 =

1
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Agrees with both the 
tabulated solution and our 
result from integration
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Moment of Inertia About the yAxis
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𝐼6 =
9
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Agrees with our result
from integration
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