Internal Forces in Planar Structures Steven Vukazich San Jose State University

Consider the Frame

From an Equilibrium Analysis, We Can Find the Support Reactions

Cut the Frame into Two Sections

Free Body Diagrams of the Sections of the Frame

Three internal forces are developed to ensure equilibrium of each section

 $\bigwedge_{A_{v}}^{A} A_{x}$

F = Axial Force

V = Shear Force

M = Bending Moment

Can use our three equations of equilibrium to find F, V, and M

Use Equilibrium to Find Internal Forces

$$\begin{array}{ccc}
& + \sum_{X} M_{X} = 0 & \longrightarrow & M_{Q} \\
& + \sum_{X} F_{X} = 0 & \longrightarrow & F_{Q} \\
& + \sum_{X} F_{Y} = 0 & \longrightarrow & V_{Q}
\end{array}$$

Can use the free-body diagram of either section to find F_Q , V_Q , and M_Q .

Internal Force Example Problem

A beam is supported by a pin support at point A and extends over a roller support at point D. The beam is and subjected to a uniformly distributed load from A to B, a point moment at point C an inclined point load at point E as shown.

Find the internal forces at points q, r, s, and t.

Find All of the External Forces

FBD of beam

Find All of the External Forces

$$+ \uparrow \sum F_{y} = 0$$

Find All of the External Forces

$$\xrightarrow{+} \sum F_{x} = 0$$

External Forces

FBD of beam showing all external forces

Find Internal Forces at Point q

Cut beam at point q

Find Internal Forces at Point q

FBDs of Segments Aq and qBCDE

Find Internal Forces at Point q

FBD of Segments Aq

$$+\sum M_q=0$$

$$+ \uparrow \sum F_y = 0$$

$$\xrightarrow{+} \sum F_{x} = 0$$

$$M_q = 42 \text{ k-ft}$$

$$V_q = 1 \text{ k}$$

$$F_q = -4 \text{ k}$$

Internal Forces at Point q

FBDs of Segments Aq and qBCDE

Find Internal Forces at Point *r*

Cut beam at point *r*

Find Internal Forces at Point *r*

FBDs of Segments ABr and rCDE

Find Internal Forces at Point r

FBD of Segment ABr

$$+ \sum M_r = 0$$

$$+ \uparrow \sum F_y = 0$$

$$M_r = 31 \text{ k-ft}$$

$$V_r = -5 \text{ k}$$

$$F_r = -4 \text{ k}$$

Internal Forces at Point *r*

Find Internal Forces at Point s

Cut beam at point s

Find Internal Forces at Point s

FBDs of Segments ABCs and sDE

Find Internal Forces at Point s

FBD of Segment sDE

$$+\sum M_s=0$$

$$+ \uparrow \sum F_y = 0$$

$$\xrightarrow{+} \sum_{x} F_{x} = 0$$

$$F_{s}$$

$$V_{s}$$

$$1 \text{ ft}$$

$$(5 \text{ k}) \left(\frac{3}{5}\right) = 3 \text{ k} \quad 5 \text{ k}$$

$$4$$

$$(5 \text{ k}) \left(\frac{3}{5}\right) = 3 \text{ k} \quad 5 \text{ k}$$

$$4$$

$$5 \text{ k}$$

$$4$$

$$6$$

$$8 \text{ k}$$

$$4 \text{ ft}$$

$$M_s = -7 \text{ k-ft}$$

$$V_s = -5 \text{ k}$$

$$F_s = -4 \text{ k}$$

Internal Forces at Point s

Confirm that **both** segments are in equilibrium

Find Internal Forces at Point *t*

Cut beam at point *t*

Find Internal Forces at Point t

FBDs of Segments ABCDt and tE

Find Internal Forces at Point t

FBD of Segment tE

$$+ \sum M_t = 0$$

$$+ \uparrow \sum F_y = 0$$

$$\xrightarrow{+} \sum F_{x} = 0$$

$$M_t = -6 \text{ k-ft}$$

$$V_t = 3 \text{ k}$$

$$F_t = -4 \text{ k}$$

Internal Forces at Point t

Confirm that **both** segments are in equilibrium

