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Consider an Elastic Beam Subjected
to Pure Bending
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Notes
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1. Beam is prismatic and symmetric about the y axis:
2. Material is linear elastic;
3. The x axis is attached to the neutral axis of the beam;
4. Pure bending (no internal shear) –the beam deforms in a circular arc.



Study the Geometry of the Deformed 
Shape of a Small Slice of the Beam
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Note:
• 𝐴,𝑃,𝐶,	and	𝐵,𝑄,𝐷,	are	straight	lines	whose	

intersection	define	the	center	of	curvature,	O	;
• 𝐶,𝐷, 	< 𝐶𝐷
• 𝐴,𝐵, 	> 𝐴𝐵;
• 𝑃,𝑄, = 𝑃𝑄 = 𝑙";
• 𝑙" = 𝜌𝜃;
• 𝑙 = 𝜌 − 𝑦 𝜃

𝜃



Bending Strain of the 
Horizontal Fibers of the Beam
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Length of fiber, l, after deformation

𝑙 = 𝜌 − 𝑦 𝜃

Original length of all fibers, lO
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Equilibrium of the Small Segment of Beam
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Constitutive Law for Beam Material

Beam is made of linear elastic material
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E = Modulus of Elasticity
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Review Relationships from Geometry of 
Deformation, Equilibrium, and Constitutive Law
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Substituting equation 1 into equation 3



Force Equilibrium in x Direction
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Moment Equilibrium 
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Moment-Curvature Relationship

y

𝑑𝐴

Moment of Inertia about the 
centroid of the beam cross section

𝐼 = N 𝑦Y𝑑𝐴
O

𝑀 =
𝐸𝐼
𝜌𝜌

𝐴

𝐶 𝐷

𝑃

𝐵

𝑄

𝐶′ 𝐷′

𝑂

𝐴′ 𝐵′

𝑃′ 𝑄′y

𝑙"

𝑙"

l

𝜃

𝜅 =
1
𝜌

Define:
𝜅 = Curvature of the beam
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The moment-curvature relationship is the 
basis of bending deformation theory



Bending Stress Distribution
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Summary for Pure Bending of an Elastic Beam
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1. Neutral axis (σ = 0) is located at the centroid of the beam 
cross section;

2. Moment-Curvature relationship is basis of bending 
deformation theory;

3. Bending stress varies linearly over beam cross section and 
is maximum at the extreme fibers of the beam;
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Neutral axis
Moment-Curvature relationship

Bending stress distribution


