Engineering Beam Theory

Steven Vukazich
San Jose State University




Consider an Elastic Beam with General
Supports, and General Loading
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Modulus of Elasticity = F Y ( )
Moment of Inertia =/

We seek y(x) and &(x) that describe the transverse deformation of the
neutral axis and the slope of the tangent line to the neutral axis.

Engineering beam theory assumptions:
* Transverse deformation 1s small relative to beam span;

e Effect of shear deformation is small so we can use the
moment-curvature relationship from pure bending.




Recall Relationships from Pure Bending Analysis

Moment-Curvature relationship
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Neutral axis (o = 0) 1s located at the centroid of the beam
Cross section;

Moment-Curvature relationship 1is basis of bending

deformation theory;

Bending stress varies linearly over beam cross section and
1S maximum at the extreme fibers of the beam:;




From Analytic Geometry, Recall the
Local Curvature of a Function
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Moment-Curvature Relationship
for Small Deformations

y(x)

In order to solve this differential

equation for y and 8 we need:

Moment equation (from statics);

* Two boundary (or continuity)
conditions on y or 6;

* Information on £ and L.




Common Boundary Conditions for Beam Problems
Fixed Support Pin Support
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Common Continuity Conditions for Beam Problems
Internal Support Internal Hinge
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