Challenges to Obtaining Good Parallel Processing Performance

e Outline:
e Coverage or extent of parallelism in algorithm
= Amdahl's Law

e Granularity of partitioning among processors
= Communication cost and load balancing

e Locality of computation and communication

= Communication between processors or between
processors and their memories

e Coverage: The Parallel Processing Challenge of Finding Enough Parallelism
Amdahl’s Law:

o The parallel speedup of any program is limited by the time needed for any
sequential portions of the program to be completed.

o For example, if a program runs for ten hours on a single core and has a sequential
(nonparallelizable) portion that takes one hour, then no matter how many cores are
devoted to the program, it will never go faster than one hour.

« Amdahl’s law: If s is the execution time for inherently
sequential computations, the speedup is limited by

time(l) time(1) < time(1)
time(p) s+ (parallel time(p)) s

speedup(p) =

* |If 20% of the sequential execution time is in sequential
regions, the speedup is limited to 5 independent of the
number of processors.

» Even if parallel part speeds up perfectly, performance is limited by sequential part

time Use 5 processors for parallel work

+ +
50 seconds 10 seconds -----
¥ +

100 seconds v 60 seconds

e Speedup = old running time / new running time
= 100 seconds / 60 seconds

=1.67
(parallel version is 1.67 times faster)

e Granularity: The Parallel Processing Challenge of Overhead caused by Parallelism
o Given enough parallel work, this is the biggest barrier to getting desired speedup

o Parallelism overheads include:
- Cost of starting a thread or process
- Cost of communicating shared data
- Cost of synchronizing

o Each of these can cost several milliseconds (=millions of flops) on some systems

o Tradeoff: Algorithm needs sufficiently large units of work to run fast in parallel
(i.e. large granularity), but not so large that there is not enough parallel work.

e /O Time vs. CPU Time
o Input/Output Time includes both the Memory System and Bus/Network System
o The rate of improvement of I/0 is much slower than that of the CPU

Year CPU time I/Otime | Elapsed time | % I/Otime

now 90s 10s 100s 10%
+2 45s 10s 55s 18%
+4 238 10s 33s 31%

+6 e 10s 21s 47%

e Exponentially growing gaps are occurring between:
o Floating point time (CPU processing speed) and
o Memory BandWidth (Transmission Speed of Memory) and
o Memory Latency (Startup Time of Memory Transmission)

Floating Point Time << 1/Memory Bandwidth << Memory Latency Time

Annual Typical value
increase |in 2006

Single-chip
floating-point 59% 4 GFLOPI/s
performance
1 GWord/s
Memory bus
23% =0.25

bandwidth

word/flop

e Exponentially growing gaps are also occurring between:
o Floating point time (CPU processing speed) and
o Network BandWidth (Transmission Speed of Network) and
o Network Latency (Startup Time of Network Transmission)

Floating Point Time << 1/Network Bandwidth << Network Latency Time

Annual Typical value
increase |in 2006

65 MWord/s
Network
_ 26% = 0.03
Bandwidth
word/flop

e Note that for both Memory and Network, Latency (not bandwidth) is the weaker link
» This means that it is better to use Larger Chunk Sizes (Larger Granularity)
> Better to Retrieve (from Memory) or Transmit (over the Network) a small number

of large blocks, rather than a large number of small blocks.

e However, there is a Tradeoff between using larger Granularity and Locality
o CPU Performance improves much faster than RAM Memory Performance

1000 | ~ MWProc
0
“Moore’s I;a/w/,/,/'/ 60%/yr.
100 Processor-Memory

Performance Gap:
(grows 50% / year)

10

Performance

1+

i I i i i i i i i i i i ! I i
O NM TN OMNODAO = NOTWWONDNO
00 00 C0WWMWOMWMWW PN OO
DA OOOITDODOAIRNRDDOITHITOODNITAIAITOO OO
T TTYT" T T T T v Ty v v v v v v v v v N

o So Memory Hierarchies are Used to Provide Cost-Performance Effectiveness
o Small Memories are Fast, but Expensive; Large Memories are Cheap, but Slow

L2 Cache L2 Cache

T

L3 Cache L3 Cache /
AN RN RN Y RN W N

lenuajod

S10aUU0di3a]ul

e Locality (location of the data in the Mem Hierarchy) Substantially Impacts Performance
o Keeping active Working Set in upper levels improves performance
» But this means we need to use finer granularity (many smaller blocks)
Example: Intel Pentium4

s Llcache: 3cycles = 1.64nsfora1.83 GHz CPU = 12 calculations
s L2 cache: 14 cycles = 7.65 ns for a 1.83 GHz CPU = 56 calculations

s RAM: 48 cycles =26.2ns fora 1.83 GHz CPU = 192 calculations

Cache & RAM Latency: Intel T2400 (1.83 GHz)

50

40
14 cycles f
b

—a— Memory Latency

47 cycles

Latency (clock cycles)
8

SR IR o ‘,&@@%\&

W R L R I >
PENE, OO >
SRR A RO F P ‘95*"6@"@"99@ N3

Array Size (bytes)

Communication in Parallel Applications

Process1 Process 2 Process 3 Process 4 Process5 Process 6

~10Cycles

Processor 1 ‘\ Processor 2 | Processor 3

~100 Cycles

' ~100,000 Cycles .

In parallel programming, communication considerations
have the same importance as single core optimizations!

e Tiling can be used to Partition Task such that Memory Hierarchy is better Leveraged

Cache block Contiguity in memory layout cache block is
straddles partition within & parti
boundary\ /\ A p
[]] 1 * - : L O, ¥ [‘ 1 []
+ + > + -x + 4- + + §~ 4 4 4 - :r y .w:- ,——.; » * P + * “ +
 — 4 = ' + .; = .PO + ‘._.«’Pl_g ' 2 + + E.3 »
- — + + S T— + .; SO S— 1 k-t .-; + > + - +
.;,, D T T * ’—..’ .—f
By Es "?sj B
Eg)

e Challenge: Tradeoff in Granularity Size
- From a BandWidth vs. Latency Point of View with Memory and Network:
= Want Larger Blocks because Latency is Slower than Bandwidth
- From a Memory Locality Point of View:
= Want Smaller Blocks that will fit into Fastest (Smallest) Memory in Hierarchy
Reduces Mem Access Times & Can make possible SuperLinear Speedup

e Partitioning Should also Strive to Load Balance Tasks onto the Processors

The primary sources of inefficiency in parallel codes:
* Poor single processor performance
e Typicallyinthe memory system
* Too much parallelism overhead
* Thread creation, synchronization, communication
e Load imbalance

» Differentamounts of work across processors

* Computationand communication

 Different speeds (or available resources) for the processors
* Possiblydue to load on the machine

* How to recognize load imbalance

* Time spentat synchronizationis high and is uneven across processors,
but not always so simple ...

e Load Imbalance is the Time that some processors in the system are idle due to:
o Insufficient Parallelism

o Unequal Size Tasks

e Load Imbalance Exacerbates Synchronization Overhead

o Slowest (Longest) Task or Processor holds up all other Tasks or Processors

Improving Real Performance

Peak Performance grows exponentially,
a la Moore’s Law

e INn 1990’s, peak performance increased 100x;
In 2000'’s, it will increase 1000x

But efficiency (the performance relative to
the hardware peak) has declined

o was 40-50% on the vector supercomputers
of 1990s

e now as little as 5-10% on parallel
supercomputers of today

Close the gap through ...

o Mathematical methods and algorithms that
achieve high performance on a single
processor and scale to thousands of
processors

o More efficient programming models and tools
for massively parallel supercomputers

1,000

100

Teraflops
o

0.1

Peak Performance

Real Performance

1996 2000 2004

Much of the Performance is from Parallelism

Thread-Level
Parallelism?

Instruction-Level

Paral Ie | i Al G O RS et B

Bit-Level
_Parallelism

	Temp1-7.pdf
	Temp 8 Mem and Network Comm Overhead - 1pg.pdf
	Temp 9-10.pdf
	New Page 11.pdf
	New Page 12.pdf

