The Two Main Models of Parallel Processing
Distributed Memory (MPI) and Shared Memory (OpenMP)

e Two different HW arch. models led to two different SW Programming models
o 5 years ago, MPIl was standard; Now, in 2010, OpenMP is more popular

e Two primary patterns of multicore architecture design

Shared memory

Ex: Intel Core 2 Duo/Quad

One copy of data shared
among many cores
Atomicity, locking and
synchronization
essential for correctness

Many scalability issues

Memory

Interconnection Nerwvork
i |
]JI]JE]J3 Fu

Distributed memory

Ex: Cell

Cores primarily access local
memaory

Explicit data exchange
between cores

Data distribution and
communication orchestration
is essential for performance

?nntmun _‘x'n:m%

P 1]JE F3]Ju
| 1 1 1
M M, || M, M,

Memory Systems: Distributed Memory

All memory is associated with processors.

® |[f processor A needs data in processor B, then B must
send a message to A containing the data.

® Advantages:
» Memory is scalable with number of processors
» Each processor has rapid access to its own memory

s Cost effective and easier to build: can use
commodity parts

Disadvantages

#® Programmer is responsible for many of the details of the
communication, easy to make mistakes.

® May be difficult to distribute the data structures, often
need to revise them to add additional pointers.

Programming Distributed Memory Processors

Interconnection Network
e Processors 1...n ask for X §7—\:%

e There are n places to look ; : 2 :
= Each processor's memory M, M, M, M,
) Q 9 X

has its own X

« XS may vary

e For Processor 1 to look at Processors 2's X

Processor 1 has to request X from Processor 2
Processor 2 sends a copy of its own X to Processor 1
2rocessor 1 receives the copy

2rocessor 1 stores the copy in its own memory

Message Passing

e Architectures with distributed memories use explicit
communication to exchange data

« Data exchange requires synchronization (cooperation)
between senders and receivers

P

1

Send (data) —

--.._‘_____H‘.

P,

Receive (data)

® Messages are like handshakes.

#® They need two partners: a sender and receiver.

MPI - the de facto standard

MPI has become the de facto standard for parallel
computing using message passing

What Is MPI?

The Message-Passing Interface (MPI) is a standard for
expressing distributed parallelism via message passing.

MPI consists of a header file, a library of routines and a
runtime environment.

When you compile a program that has MPI calls in it, your
compiler links to a local implementation of MPI, and then
you get parallelism; if the MPI library isn’t available, then the
compile will fail.

MPI can be used in Fortran, C and C++.

A Message Passing Library Specification

e MPI: specification
= Notalanguage or compiler specification

= Not a specific implementation or product
= SPMD model (same program, multiple data)

e For parallel computers, clusters, and heterogeneous
networks, multicores

e Full-featured

e Multiple communication modes allow precise buffer
management

e Extensive collective operations for scalable global
communication

Where Did MPI Come From?

e Early vendor systems (Intel's NX, IBM's EUI, TMC's CMMD)
were not portable (or very capable)

e Early portable systems (PVM, p4, TCGMSG, Chameleon)
were mainly research efforts

= Did not address the full spectrum of issues
= Lacked vendor support
= Were not implemented at the most efficient level

e [he MPI| Forum organized in 1992 with broad participation
= Vendors: IBM, Intel, TMC, SGI, Convex, Meiko
= Portability library writers: PVM, p4
= Users: application scientists and library writers
= Finished in 18 months

Communication Patterns

e \With message passing, programmer has to
understand the computation and orchestrate the

communication accordingly

= Point to Point

= Broadcast (one to all) and Reduce (all to one)

= All to All (each processor sends its data to all others)

= Scatter (one to several) and Gather (several to one)

Point-to-Point

e Basic method of communication between two processors
= Originating processor "sends" message to destination processor
= Destination processor then "receives" the message

e The message commonly includes network
= Data or other information
= Length of the message
= Destination address and possibly a tag

Cell "send” and "receive” commands

mfc get (destination LS addr, mfc_put (source LS addr,
source memory addr, destination memory addr,
bytes, # bytes,
tag, tag,

<...>) <...>)

Broadcast

e One processor sends the

same information to many

]]JE P]Ju
other processors | i 1
= MPI BCAST i, e Vs M,
= O
for (1 = 1 to n) A[n] = {..}
for (j = 1 to n) B[n] = {..}

C[1][J] = distance(A[i], B[]l]) Broadcast(B[l. .n])

for (i = 1 to n)

J// round robin distribute B
// to m processors

Send(A[i % m])

Reduction

e Example: every processor starts with a value and needs to
know the sum of values stored on all processors

e A reduction combines data from all processors and returns it
to a single process

= MPI_REDUCE

= Can apply any associative operation on gathered data
- ADD, OR, AND, MAX, MIN, etc.

= No processor can finish reduction before each processor has
contributed a value

e BCAST/REDUCE can reduce programming complexity and may
be more efficient in some programs

11

Example Message Passing Program

processor 1

for (i =1 to 4)

for (J = 1 to 4)

C[i] [§] = distance(A[i], B[j])

sequential

processor 1

parallel with messages
processor 2

A[n] = {.} A[n] = {.)
B[n] = {..} B[n] = {..}
Send (A[n/2+41..n], B[l..n]) Receive (A[n/2+1. .n], B[l..n])
for (i = 1 to n/2) for (i = n/2+1 to n)
for (J = 1 to n) for (jJ = 1 to n)
C[i][J] = distance(A[i], B[]]) C[i][]j] = distance(A[i], B[]])

Receive (C[n/2+1..n] [1..n])

Send (C[n/2+1..n][l..n])

12

e In the “old days”, each processor was in a separate computer

o So parallel processing was accomplished using a collection of these computers

= Many computers were put together into a Cluster or a Large SuperComputer
o Each had its own Memory - Distributed Memory ->Message Passing Needed

e Now (2010) Multi-Core and Many-Core Designs put several processors on same chip
o So cores are likely to Share Memory ->Shared Mem - Shared Mem Programming

e Two primary patterns of multicore architecture design

Shared memory

Ex: Intel Core 2 Duo/Quad

One copy of data shared
among many cores
Atomicity, locking and
synchronization
essential for correctness

Many scalability issues

Memory

Intereonnection Network
i |
u 3 3 a
J 1] 2] 3 J fl

Distributed memory

Ex: Cell

Cores primarily access local
memory

Explicit data exchange
between cores

Data distribution and
communication orchestration
is essential for performance

Intereonnection Network

P P P
F 3 m

| 1 | |

M, M M,

3

13

Memory Systems: Shared Memory

e

Global memory space, accessible by all processors

Processors may have local memory to hold copies of
some global memory.

e

#® Consistency of copies is usually maintained by
hardware.

Advantages:

» Global address space is user-friendly, program may
be able to use global data structures efficiently and
with little modification.

» Data sharing between tasks is fast

e Disadvantages:

System may suffer from lack of scalability. Adding CPUs
increases traffic on shared memory - to - CPU path.
This is especially true for cache coherent systems

Programmer is responsible for correct synchronization

#® Systems larger than an SMP need some
special-purpose components.

14

Programming Shared Memory Processors

® Processor 1...n ask for X Memory
Q

e There is only one place to look I

e Communication through Interconnection Network
shared variables 7
Py

]J3 P n

e Race conditions possible
= Use synchronization to protect from conflicts
= Change how data is stored to minimize synchronization

e OpenMP

Q De-facto standard API for writing shared memory parallel
applications in C, C++, and Fortran

d Consists of:
e Compiler directives

® Run time routines
e Environment variables

15

e General Philosophy behind OpenMP is that the compiler doesn’t have enough
Information at the Source Code Level to do effective Parallelization

O The compiler may not be able to do the parallelization in
the way you like to see it:

® |t can not find the parallelism

v The data dependence analysis is not able to
determine whether it is safe to parallelize or not

e The granularity is not high enough

v The compiler lacks information to parallelize at the
highest possible level

Q This is when explicit parallelization through OpenMP
directives comes into the picture

e Therefore, Programmer must add extra “Comments” to help in Parallelization
Comments, or “Directives”, are typically focused on Loops in the Code
Loops (that are data independent per iteration) are prime targets for parallelization
Loops are typically where the majority of execution time is spent
Loops are typically modular and operate on Arrays or Matrices
By focusing on Loops, we can get the best bang per buck

Minimal extra coding (directives) to get maximum speedup in runtime hotspots
16

Advantages of OpenMP A

O Good performance and scalability

e /f you do it right....
Q De-facto and mature standard

2 An OpenMP program is portable
e Supported by a large number of compilers
J Requires little programming effort

O Allows the program to be parallelized incrementally

A Programmer’s View of OpenMP

¢ OpenMP is a portable, threaded, shared-memory programming
specification with “light” syntax
» Exact behavior depends on OpenMP implementation!
* Requires compiler support (C or Fortran)

* OpenMP will:

» Allow a programmer to separate a program into serial regions and
parallel regions, rather than T concurrently-executing threads.

e Hide stack management
* Provide synchronization constructs

* OpenMP will not:
e Parallelize automatically
e Guarantee speedup

e Provide freedom from data races
17

Motivation

e Unix Forking and Thread libraries are hard to use

e P-Threads/Solaris threads have many library calls for initialization,
synchronization, thread creation, condition variables, etc.

e Programmer must code with multiple threads in mind

e Synchronization between threads introduces a new
dimension of program correctness

e Wouldn’t it be nice to write serial programs and somehow
parallelize them “automatically”?

e OpenMP can parallelize many serial programs with relatively few
annotations that specify parallelism and independence

* |tis not automatic: you can still make errors in your annotations
e Basic Idea Behind OpenMP

must decide what is parallel in program
¢Makes any changes needed to original source code

¢E.g. to remove any dependences in parts that
should run in parallel

18

© inserts directives telling compiler how
statements are to be executed

ewhat parts of the program are parallel
¢how to assign code in parallel regions to threads
ewhat data is private (local) to threads

OpenMP Implementation

Program with sequential
OpenMP compilatio
directives

OpenMP
compilation

With calls to
runtime library

e Sample OpenMP Directives:

#pragma omp parallel for
#pragma omp critical
#pragma omp master
#pragma omp barrier
#pragma omp single
#pragma omp atomic
#pragma omp section
#pragma omp flush
#pragma omp ordered

e Directives look like comments to a non-OpenMP savvy compiler (OpenMP disabled)
o So by not using the —fopenmp compiler option, parallelization is switched off

o If program is compiled sequentially
+0OpenMP comments and pragmas are ignored

e If code is compiled for parallel execution

¢comments and/or pragmas are read, and
edrive translation into parallel program

e Ideally, one source for both sequential and
parallel program (big maintenance plus)

20

e OpenMP can use the same source code for both Sequential and Parallel Execution
o Provides Tremendous Advantages

Ultimate Scaling (from 1 core sequential up to N cores of parallelism)
Simplifies Debugging and Optimization
Optimized sequential program will more likely be an optimized parallel one
Allows Debugging to occur in simpler, Sequential mode first

(But a correct sequential program is not necessarily a correct parallel one)

e Allows Incremental Parallelization

Sequential program a special case of threaded program
Programmers can add parallelism incrementally
Profile program execution
Repeat
Choose best opportunity for parallelization
Transform sequential code into parallel code

Until further improvements not worth the effort
21

o If Parallelization switch of Compiler is turned on (using the —-fopenmp option) then:

generates explicit threaded code

¢shields user from many details of the multithreaded
code

. figures out details of code each
thread needs to execute

e Compiler does check that programmer
directives are correct!

e Programmer must ensure Code + Directives are correct

e The program generated by the compiler is
executed by multiple threads

+0One thread per processor or core
e Each thread performs part of the work

¢ Parallel parts executed by multiple threads
¢ Sequential parts executed by single thread

e Dependences in parallel parts require
synchronization between threads

22

e OpenMP’s Memory Model

prlvate

Shared

Memory

prlvaie

v All threads have access to the
same, globally shared, memory

v Data can be shared or private

v Shared data is accessible by all
threads

v Private data can only be
accessed by the thread that
owns it

v’ Data transfer is transparent to
the programmer

v Synchronization takes place,
but it is mostly implicit

QO In an OpenMP program, data needs to be “labelled”

Q Essentially there are two basic types:
e Shared

v There is only instance of the data

v All threads can read and write the data simultaneously,
unless protected through a specific OpenMP construct

v All changes made are visible to all threads

¢ But not necessarily immediately, unless enforced

e Private

v Each thread has a copy of the data
v No other thread can access this data

v Changes only visible to the thread owning the data

23

e OpenMP’s Execution Model is based on Forks
o Similar to Unix Fork

o Instead of Manually using Fork, Wait and Signal, Programmer uses Directives

e When work can be done in Parallel, Programmer Bounds Code with OpenMP Directives

Fork and Join Model| Relating Fork/Join to Code
Master
Thread
rea — Sequential code
Parallel region eIz for _{
Threads — Parallel code
i ¥
— Sequential code
Parallel region {' * * } { %‘ﬁ;ﬁﬁ; for'{"";""" Parallel code
l }
—_— Sequential code

e Prime Candidates for Parallelization (and forking of worker threads) are Loops

o Code not in loops are not executed much, so can proceed in Sequential mode
24

Why Loops Are Good

= Loops are very common in many programs.

m Also,it’s easier to optimize loops than more arbitrary

sequences of instructions: when a program does the same

thing over and over, it’s easier to predict what’s likely to
happen next.

So, hardware vendors have designed their products to be
able to execute loops quickly.

Superscalar Loops

DO 1 = 1, length

z(1) = a(i) * b(i) + c(1) * d(1)
END DO
Each of the iterations 1s completely independent of all
of the other iterations: for example,

z(1l) = a(l) * b(1l) + c(1) * d(1)
has nothing to do with

z(2) = a(2) * b(2) + c(2) * d(2)

Operations that are independent of each other can be
performed 1n parallel.

25

* OpenMP easily parallelizes loops

* Requiresthatthere be No data
dependencies(reads/write or
write/write pairs) between
iterations!

* Preprocessor calculates loop
bounds for each thread directly
from serial source

Domain Decomposition Using Threads

Thread 0 Thread 2

26

For-loop with independent
iterations

For-loop parallelized using
an OpenMP pragma

#pragma omp parallel for
for (int i=0; i<n; i++)
c[i] = a[i] + b[i];

for (int i=0; i<n; i++)
c[i] = a[i] + b[i];

e Gives the Following Result for N = 1000

e 200 Iterations are assigned to each of the 5 Threads

Thread 0 |Thread 1 Thread 2 Thread 3 Thread 4
) i=0-199 T 1=200- 399 |—4ﬂﬂ 599 |—Eﬂﬂ ?99 —Bﬂﬂ 999
afi] | a[1] | a[1] afi1] | a[1]
+ + + + +
b[1i] b[i] b[1i] b[1i] b[1i]
cl[1i] cl[i] cl[1i] cl[1i] cl[1i]

27

Domain Decomposition

Sequential Code:

int a[1000], 1i;

for (1 = 0; 1 < 1000; i++) a[i] = func(i);

Thread O:

for (i = 0;
Thread 1:

for (i = 500)

< 500; 1i++)

< 1000; i++

Private

= func (i) ;

= func(i) ;

Shared

Shared versus Private Variables

Private
\VEIREDIES

4 Thread I

Shared
Variables

Private

Variables

28

