
1

The Two Main Models of Parallel Processing 

Distributed Memory (MPI) and Shared Memory (OpenMP)

 Two different HW arch. models led to two different SW Programming models

o 5 years ago, MPI was standard; Now, in 2010, OpenMP is more popular



2



3



4



5



6



7



8



9



10



11



12



13

 In the “old days”, each processor was in a separate computer

o So parallel processing was accomplished using a collection of these computers

 Many computers were put together into a Cluster or a Large SuperComputer

o Each had its own Memory  Distributed Memory Message Passing Needed

 Now (2010) Multi-Core and Many-Core Designs put several processors on same chip

o So cores are likely to Share Memory Shared Mem Shared Mem Programming



14

 Disadvantages:



15

 OpenMP



16

 General Philosophy behind OpenMP is that the compiler doesn’t have enough

Information at the Source Code Level to do effective Parallelization

 Therefore, Programmer must add extra “Comments” to help in Parallelization

Comments, or “Directives”, are typically focused on Loops in the Code

Loops (that are data independent per iteration) are prime targets for parallelization

Loops are typically where the majority of execution time is spent

Loops are typically modular and operate on Arrays or Matrices

By focusing on Loops, we can get the best bang per buck

Minimal extra coding (directives) to get maximum speedup in runtime hotspots



17



18

 Basic Idea Behind OpenMP



19



20

 Sample OpenMP Directives:

 Directives look like comments to a non-OpenMP savvy compiler (OpenMP disabled)

o So by not using the –fopenmp compiler option, parallelization is switched off



21

 OpenMP can use the same source code for both Sequential and Parallel Execution

o Provides Tremendous Advantages

Ultimate Scaling (from 1 core sequential up to N cores of parallelism)

Simplifies Debugging and Optimization

Optimized sequential program will more likely be an optimized parallel one

Allows Debugging to occur in simpler, Sequential mode first

(But a correct sequential program is not necessarily a correct parallel one)

 Allows Incremental Parallelization



22

 If Parallelization switch of Compiler is turned on (using the –fopenmp option) then:

 Programmer must ensure Code + Directives are correct



23

 OpenMP’s Memory Model



24

 OpenMP’s Execution Model is based on Forks

o Similar to Unix Fork

o Instead of Manually using Fork, Wait and Signal, Programmer uses Directives

 When work can be done in Parallel, Programmer Bounds Code with OpenMP Directives

 Prime Candidates for Parallelization (and forking of worker threads) are Loops

o Code not in loops are not executed much, so can proceed in Sequential mode



25



26



27

 Gives the Following Result for N = 1000

 200 Iterations are assigned to each of the 5 Threads



28


