
CS 286
Two Lecture Introduction

Parallel Processing:

A Hardware Solution
&

A Software Challenge

Outline

 Hardware Solution (Day 1)

 Software Challenge (Day 2)

 Opportunities

Parallel Processing is Essentially an Evolution in

 Micro- and Macro-Architecture Hardware

 That provides a Solution to:

• The Heat and Power Wall

• The Limitations of ILP

• Cost-Effective Higher Performance

Key Points from Day 1

Hardware Solution

 HW Paradigm Shift Occurring (esp. Micro-level)

 More Cores; Not a Faster Clock or more ILP

Outline

 Hardware Solution

 Software Challenge

 Opportunities

 Technical
 Business

Software Challenge - Technical

Change in Hardware Requires Change in Software

 The Car (Hardware) has Changed

• From a Sequential Engine To a Parallel Engine

 The Driver (Software) Must Change Driving Techniques

• Otherwise, Sub-Optimal Performance will Result

Hardware
&

Software

Car
&

Driver

 Because HW is going Parallel, so must the SW
in order to get performance gains from HW platform

Software Challenge - Technical

GHz Era Multi-core Era

TIME

PE
R

FO
R

M
A

N
C

E Multi-core Needs
Parallel Applications

Software Challenge - Technical

 The Challenge:

Cannot Extract Parallelism Without User Support

 The Goal: Make Parallel Programming the

Mainstream Method for Improving SW Performance

 But Parallel Programming is Harder in all Aspects:

• Design & Re-engineering

• Debugging

• Testing

• Profiling

• Scaling

Overview

Software Challenge - Technical

 Increased Complexity will Require More Careful Analysis

• Parallelism Adds Temporal Dimension to Problem

• Hard for Humans to Think about Parallel Events

• Large Permutation of Operation Interleavings Possible

 Increased Programmer Expertise Needed in:

• The Application Domain and Algorithms

• Source Code Parallelization Techniques

• Communication & Synchronization

• Performance Optimization

Design & Re-engineering

• Static Dependency Analyzer: Draws Call-Graph Structure

• Dynamic Profile Analyzer: Plots Thread Activity vs. Time

• Code Parallelizer: Parallel Language, Paradigm, Compiler

User

Dynamic
Analyzer

Code
Parallelizer

Serial
Code

Static
Analyzer Parallel

Code

Code Parallelization Tools

User Role in Code Parallelization

• Run & Interpret Static Data Dependency Analysis

• Run & Interpret Dynamic Profile Analysis

• Drive Code Parallelizer Transformations

User

Dynamic
Analyzer

Code
Parallelizer

Source
Code

Static
Analyzer

User Knowledge in Code Parallelization

• High-Level Application Code and Algorithms

• Low-Level Thread and Communication Profile

• Source Code Parallelization & Optimization Techniques

User

Code
Parallelizer

Source
Code

User Knowledge in Code Parallelization

• High-Level Application Code and Algorithms

• Low-Level Thread and Communication Profile

• Source Code Parallelization & Optimization Techniques

User

Code
Parallelizer

Source
Code

Goal:
Assist The User

Help User Focus on

Relevant Information

from Analyses

Code
Parallelizer

Source
Code

Help User Focus on

the Code with Best

Potential Speedup

Ultimate Goals

• Off-Load User as Much as Possible

• Make Parallelization Easier and More Efficient

• Maximize Code Performance Gain

• Minimize Analysis and Transformation Time

• Perform Data Fusion on Static and Dynamic Analysis

• Filter, Correlate, and Interpret the Results

• Produce Correct, Bug-Free Parallel Code

• Increase Degree of Automation

An Ideal Set of Parallelization Tools Would:

But, Current SW Tools Still Need Further Development

Software Challenge - Technical

 Lack of Tools Compounds Problem

• Existing Tool Chain only for Sequential Programming

 Need New Parallel Programming Tools & Infrastructure

• Effective Models for Parallel Systems

• Constructs to make Parallel Architecture more Visible

• Languages to More Clearly Express Parallelism

• Reverse Engineering Analysis Tools

• To Assist with Conversion of Sequential to Parallel

 Especially for Optimized Sequential Code

Tools

Software Challenge - Technical

 Parallelism can Give Rise to a New Class of Problems

• Caused by the Interactions Between Parallel Threads

 Race Condition:

Multiple Threads Perform Concurrent Access

to the Same Shared Memory Location

 Threads “Race” Against Each Other

• Execution order is assumed but cannot be guaranteed

• Outcome depends on which one wins (by chance)

• Results in Non-Deterministic Behavior

Race Conditions

Software Challenge - Technical

ATM Race Condition Example

Joint Bank
Account

$ 300

1) Check Balance

2) Withdraw $300

“$300” “$300”

? ?

 Race Conditions are Especially Hard to Detect & Debug

• Errors are Very Subtle

• No Apparent “Failure” Occurs

• Program Continues to Run “Normally”

• Program Completes “Normally”

• Errors are Intermittent

• Hard to Reproduce and Diagnose

• Errors Can Slip Through SQA Testing Process

• Potential Lurking Bug

 Most Common Error in Parallel Programs

Software Challenge - Technical

Race Conditions

Software Challenge - Technical

Semaphores

 Semaphores Offer a Solution to Race Conditions

• However Semaphores themselves can cause Problems:

• Introduce Overhead

• Can Create Bottlenecks

• Mutually Exclusive (one-at-a-time) Access

Software Challenge - Technical

 Another Potential Problem Arising From Parallelism

 Deadlock:

Two or More Threads are Blocked because

Each is Waiting for a Resource Held by the Other

Deadlock

Thread 1 Thread 2

Sem_B

Sem_A

Requests

Requests

Held by

Held by

Software Challenge - Technical

Deadlock

 Not as Hard as Race Conditions

• Errors are More Obvious

• System Usually Freezes

 But Similar to Race Conditions

• Errors are Intermittent

• Hard to Detect, Reproduce, Diagnose, Debug

• Errors Can Slip Through SQA Testing Process

• Potential Lurking Bug

 Another Common Error in Parallel Programs

Software Challenge - Technical

 Time-Sharing = Multi-Tasking = Multiplexing = Concurrent

 One Processor is being shared (switched quickly)

between tasks making them appear to be “Concurrent”

 But it’s essentially just an illusion, because

at any instant in time, only one task is really executing

 Concurrency is not the same as true Parallelism

Concurrent: Two Threads are In Progress at Same Time
vs.

Parallelism: Two Threads are Executing at Same Time

Concurrent vs. Parallel

Software Challenge - Technical

 SW Problem is Harder than that from “Time-Sharing” Era

• Multi-Cores (Micro) & Multi-Nodes (Macro) HW enable:

- Not Just “Multi-Tasking” or Concurrency, but

- True Parallelism

 Potential Problem when migrating “Multi-Tasking” Code

 Consider a SW Application Programmed with Two Tasks:

• One task is assigned a low priority; other a high priority

• In Multi-Tasking: LP task cannot run until HP is done

• Programmer could have assumed Mutual Exclusion

• In Parallel System: LP and HP can run at Same Time

Concurrent vs. Parallel

Software Challenge - Technical

 Harder Because of Intermittent, Non-Deterministic Bugs

 Time Sensitive (Temporally Aware) SW Tools Needed

 New Parallel Debugging Tools Required

• Need to Exert Temporal Control over Multiple Threads

• Ideal Debugger would have:

Reverse Execution Capability (cycle-accurate undo)

Instant Replay Capability (w/ accurate time counter)

 Cannot Use Ad-hoc Debugging via PRINT Statements

• Adds Extra Instructions which could Change Timing

Debugging

Software Challenge - Technical

 Simple Code Coverage Metrics Insufficient

e.g.) Just Tracking Statement or Branch Executions

 Need to Consider Other Code Executing in Parallel

• Want to Test All Possible Instruction Interleavings

• Otherwise, Code Would Not Be Fully Exercised

• Especially Important to Check Interactions In Time

Race Condition Deadlock

Testing

Software Challenge - Technical

 Important to Know Which Code (sections) to Optimize

• Concentrate on “Hot” Spots

 Harder in Parallel Because Must Consider:

• Thread Creation & Synchronization Overhead

• Communication to Computation Ratio

• Thread Balancing

Performance Profiling and Tuning

t
i
m
e

Busy
Idle

Software Challenge - Technical

Amdahl’s Law

 Parallel Speedup is Limited by the Amount of Serial Code

Maximum Theoretical Speedup from Amdahl's Law

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

Number of cores

S
p

e
e

du
p

%serial= 0

%serial=10

%serial=20

%serial=30

%serial=40

%serial=50

Software Challenge - Technical

Parallel Scaling

 Potentially Negative ROI due to Parallel Overhead

Speedup vs. Degree of Parallelism

Degree of Parallelism

Speedup

Software Challenge - Technical

 Implications of Amdahl’s Law:

• Diminishing Marginal Rates of Return from Parallelism

• It will be Hard to get good Parallel Scaling from SW

• Eliminating Sequential Code is Important

• Even Small Amounts of Serial Execution can

Render a Parallel Machine Ineffective

 Applications That Lack Sufficient Parallelism Will Be

Performance Dead Ends

Parallel Scaling

Software Challenge - Business

Changing Technology Curves is Hard

Cost / Performance vs. Performance

Performance

Cost

Performance

P1

P2

P3

 New Technology Curves Generally Appear “Down Right”

Software Challenge - Business

Changing Technology Curves is Hard

Cost / Performance vs. Performance

Performance

Cost

Performance

 Never Ride Technology Curve “Up” into Over-Utilization

Sequential

Parallel

Software Challenge - Business

Changing Technology Curves is Hard

Cost / Performance vs. Performance

Performance

Cost

Performance

 Change (“Hop Down Right”) to New Tech Curve Instead

Sequential

Parallel

Software Challenge - Business

Changing Technology Curves is Hard

 Investment in Training and New Tools Required

• Learning Curve for Employees

• Entirely New SW Engineering Infrastructure

• Design / Re-engineering

• Debugging

• Testing

• Profiling

• Scaling

 Legacy Code Needs to be Re-engineered for Parallelism

Parallel Programming is Hard

• More Complex

• Lack of Tools

• New Type of Bugs

• Race Conditions

• Deadlocks

• Harder to Debug, Test, Profile, Tune, Scale

Parallel Programming is a Software Challenge

Key Points

Software Challenge

Outline

 Hardware Solution

 Software Challenge

 Opportunities
 Technical
 Business

Opportunities - Technical

 Opportunity to Create New SW Engineering Infrastructure

 Better, Smarter Tools for

• Design / Re-engineering

• Debugging

• Testing

• Profiling

 Opportunity to Re-Invent Entire SW Engineering Field

 Algorithms, Languages, Compilers, Processes……

 Dawn of a New Era

• Second Chance (to get it right)

Opportunities - Technical
 The Universe is Inherently Parallel

• Natural Physical and Social / Work Processes

• Weather, Galaxy Formation, Epidemics, Traffic Jam

 Can Leverage Unique Capabilities offered by Parallelism

 Add New Features via Separate Parallel Modules

• Avoids Re-engineering of Old Module

• More Functionality

• No Increase in Wall Processing Times

 Speculative Computation

Precompute alternatives to Minimize Response Time

e.g.) Video Game Up / Down / Left / Right

More Responsive User Interfaces

Opportunities - Technical
 (Yet) Undiscovered Technical Opportunities

 New Parallel Algorithms

 Super-Linear Speedups

• Parallel Computer has
N times more Memory

• Larger % of SW can fit
in upper Levels of
Memory Hierarchy

• “Divide and Conquer”
leverages faster Mems

• An Important Reason for
using Parallel Computers

Opportunities - Business

High Performance Computing (HPC)

 Cloud and Parallel Processing Makes HPC Ubiquitous

 New Applications Become Possible

• Personalized Drugs (Genetic & Molecular Profiling)

• Stream Computing (Real-Time Analytics)

 Smarter Applications Become Possible

• Virtual Assistants

 Efficiency Becomes Possible

• High-Fidelity Simulations

e.g.) Car Safety Tests

Opportunities - Business

Opportunities - Business

High Performance Computing (HPC)

 Grand Challenges Become Possible

 Grand Challenge was Defined by Wilson in 1987:

• Fundamental Problem in Science or Engineering

• Has Potentially Broad Economic and Scientific Impact

• Could be Advanced with HPC Resources

 Grand Challenge 3T Goal:

• 1 TeraFlop/second of Processor Power

• 1 TeraByte of Main Memory

• 1 TeraByte/second of I/O Bandwidth

Opportunities - Business

High Performance Computing (HPC)

 Examples of Grand Challenges

• Data Mining and Fusion

• Hurricane Prediction

• Global Warming

• World Hunger

• Cure for Serious Diseases

Opportunities - Business

New Capabilities to Benefit Mankind

Opportunities - Business

New Capabilities to “Entertain” Mankind

…. Maybe even “OutSmart” Mankind

Opportunities - Business

Corporate & National Competiveness

Opportunities - Business

Visualization

 Assist in the Interpretation of Massive Data Sets.

 For example, a 5 day weather forecast of the
continental U.S. would produce 10 terabytes

 No one can look at that many numbers,

But a Picture is worth a Thousand Words.

And a Movie or Animation is worth a Million Words.

• Time-lapse simulation of Global Warming

 Humans can detect and interpret high-level visual

Patterns even better than a computer can today.

Example Visualization:
Weather Forecast

Example Visualization:
Structure of the Universe

Opportunities - Business

Opportunities – Business
Meeting People’s Expectations
About Multitasking Capabilities

There's no multitasking. "Are you saying I can't listen to Pandora
while writing a document? I can't have my Twitter app open at the
same time as my browser? I can't have AIM open at the same
time as my email? Are you kidding me? This alone guarantees
that I will not buy this product," Gizmodo's Adam Frucci writes.

Apple
iPad

Jan 2010

The World is Moving Towards

Parallel Processing On The Cloud

The Cloud Offers Even More Opportunities

Opportunities - Business

Ubiquitous HPC via Cloud

 HPC on Mobile Devices Possible

 “CloneCloud” (Berkeley Research Labs)

• Clone Smartphone in Cloud

- Off-load Compute-Intensive tasks

- Conserve Mobile Device Battery Life

 “Fusion Render Cloud” for Mobile Gaming (AMD)

• Cloud Computes Game Graphics and Compresses it

• Mobile’s Computation Simplified to Decompression

Using Parallel Programming,
You Can Reach The Clouds

And The Sky is The Limit !

Wondering about Parallel Programming?

Plan to Read Entire MCP Book, *Except* for:

- Skip Ch. 5
- Read only the first part of Ch. 8 (up to 219)
- Read only the first part of Ch. 10 (up to 265)
- Only Skim Ch. 11

