

Performance analysis on Multicore Processors
Naresh Kasturi, Saravana Kumar Gajendran

Department of Computer Science

San Jose State University

San Jose, CA 95112

e-mail: {naresh.kasturi, saravana.kumar}@sjsu.edu

ABSTRACT
With advance in prevalence personal computers, the end -

user needs faster and more capable systems. This can be

achieved by increasing the clock speed or adding multiple

processing cores to the same chip. But this is an old trend, so

manufacturers are focusing multicore processors. The use of

low cost multicore processors with small-scale parallelism of

several or several processing units has been spread to general

purpose personal computers. In this paper, we focus on

implementing multicore processor architecture to

evolutionary computation. With large use of multicore

processors, we focus on benchmarking these systems at

operating system level. So we introduce multicore processor

architecture and communication (MPAC). We use

these benchmark techniques to validate MPAC based

performance analysis on Intel, AMD multicore based

platforms.

1. INTRODUCTION

Since the early 1990s, research on methods for boosting up

evolutionary computation through implementations on massively

parallel computers has been quite active. Besides, the use of

multicore processors has recently been expanding even in

general purpose personal computers. In this paper, we

present the description that all CPUs in a multi-core processor be

able to directly reference the local memory of each core without

having to go through main memory. So we target the

improvement in the execution performance of evolutionary

computation and to reduce the energy (power) consumption.

Performance benchmarking depends on development methods

and specialized knowledge which lead to the problems: portable

and accurate time measurement, execution control and

repetitions, experimental design, statistical analyses of

measurements and presentation of results. So design and

development organizations need micro-benchmarks to fully

understand the performance impact of state-of-the-art processors

based computing platforms to host their new products. Present

benchmarking practice depend on two contradictory

methodologies: using well-known industry standard benchmarks

or developing customized benchmarks. Industry standard

benchmarks provide baseline performance for a system or a

platform. Customized benchmarks are for evolving processor,

memory, network and storage architecture. Such benchmarks

implement customized workload specifications that are

significant to the prototype, they may not be reused for any other

platform or application performance. Thus these both

technologies do not serve the need of rapidly evolving computer

sub-systems, including multi-core processors, complex memory

subsystems and high-performance interconnects. So we use

specification based benchmarking as an alternative to the

existing benchmarking techniques. The primary objective of NAS

Parallel Benchmark was to use a paper-and-pencil specification

of a problem to be solved on the target system rather than using a

specific benchmark code. This approach lets vendors to write an

optimized code with their own choices of language, compiler,

and run-time system for their target architecture. So develop a

multi-core processor architecture and communication (MPAC)

framework, which is an open source C-based, POSIX-complaint,

benchmarking library and is freely available. MPAC library is

portable across hardware platforms and hence we present details

of this benchmarking framework.

2. MULTICORE PROCESSOR
A multicore processor is a computing component with more than

one central processing units or cores. A core is a unit that reads

and executes instruction, but a multicore processor can run

multiple instruction at the same time, thus increasing the speed

and performance of the system. This improvement in

performance may be gained by the software algorithm used in it

and its implementation.

2.1 A Brief History of Microprocessors
Intel manufactured the first microprocessor, the 4-bit 4004, in the

early 1970s which was basically just a number-crunching

machine. Shortly afterwards they developed the 8008 and 8080,

both 8-bit, and Motorola followed suit with their 6800 which was

equivalent to Intel's 8080. The companies then fabricated 16-bit

microprocessors, Motorola had their 68000 and Intel the 8086

and 8088; the former would be the basis for Intel's 80386 32-bit

and later their popular Pentium lineup which were in the first

consumer-based PCs. Each generation of processors grew

smaller, faster, dissipated more heat, and consumed more power.

2.2 Moore's Law
One of the guiding principles of computer architecture is known

as Moore's Law. In 1965 Gordon Moore stated that the number of

transistors on a chip will roughly double each year (he later

refined this, in 1975, to every two years). What is often quoted as

Moore's Law is Dave House’s revision that computer

performance will double every 18 months.

The graph in fig.1 plots initial processors with number of

transistors per chip. The number of transistors has roughly

doubled every 2 years. Moore's law continues to reign; for

example, if the current trend continues to 2020, the number of

http://sjsu.edu/

transistors would reach 32 billion. House's prediction, however,

needs another correction. Throughout the 1990's and the earlier

part of this decade microprocessor frequency was synonymous

with performance; higher frequency meant a faster, more capable

computer. Since processor frequency has reached a plateau, we

must now consider other aspects of the overall performance of a

system: power consumption, temperature dissipation, frequency,

and number of cores. Multicore processors are often run at

slower frequencies, but have much better performance than a

single-core processor.

Figure 1. Microprocessor Transistor Counts & Moore’s Law

2.3 Configuration of Multicore processors
Multi-core processors have come to be installed in many types of

computing equipment in recent years. In fact, multi-core

processors equipped with multiple general purpose cores of the

same type (homogeneous multi-core processors) are coming to be

installed even in PCs. In the following, “multi-core processor”
refers to a homogeneous multi-core processor. Obtaining better

performance through the use of multi-core processors is not only

a matter of integrating multiple cores, but also high memory-

access performance that matches CPU operational ability is

necessary. Memory-access performance has traditionally been

improved by increasing the capacity of cache memory, but such

an approach increases the area of the processor and drives up

energy consumption. In addition, increasing the number of cores

means more control overhead for maintaining coherence between

caches, which can lead to a drop in performance. In response to

these problems, the use of local memory called scratchpad

memory (SPM) inside a core has been attracting attention since

this kind of memory can achieve the same access performance as

cache memory while having an energy-saving effect. The basic

configuration of a typical multi-core processor equipped with

local memory is shown in Figure 2. In this configuration,

multiple cores, each consisting of a CPU and local memory,

connect to main memory via a system bus. Here, it is generally

specified that local memory in each core be several KB to

several hundred KB in capacity in accordance with chip area

and that read/write operations be limited to that core[12].

Thus, if one core needs to reference the data stored in the

local memory of another core, it can only do so after that data

has been moved to main memory. Typical data read/write

speeds (number of clock cycles) among the CPU, local

memory, and cache memory that configure each core are shown

in Figure 3. Compared to data read/write speeds between the

CPU and cache/local memories, those between main memory

and cache/local memories are as much as 100 times slower.

In addition, while transfers between main memory and cache

memory are controlled by hardware, those between main memory

and local memory are all controlled by software. Thus, if transfer

control between main memory and local memory has to be

performed frequently, transfer overhead will increase leading to

a drop in performance. It is essential that this overhead in

transfer control between main memory and local memory be

decreased to make effective use of local memory.

Figure 2. Basic Configuration of multi-core processor

Figure 3. Core configuration and data Read/Write speeds

3. SOFTWARE ARCHITECTURE OF

MPAC
MPAC library provides a common benchmarking infrastructure

that eases the development of specification-based micro-

benchmarks, application benchmarks, and network traffic load

generators for state-of-the-art multi-core processors based

computing and networking platforms by leveraging hardware and

operating system resources. MPAC Library uses multiple threads

in a fork-and-join approach that helps simultaneously exercise

multiple processor cores of a system under test (SUT) according

to user specified workload.

The flexibility of MPAC software architecture allows a user to

generate specification driven workload for micro-benchmarking

without any parallelism. MPAC library allows the user to

implement suitable experimental control and allows the same

workload to be replicated across multiple processors or cores

using a fork and join parallelism. Hence, user can focus on

specifying the measurement-based experiment and evaluating the

results instead of implementing common benchmarking tasks.

MPAC library is an open source C-based, POSIX complaint,

library, which is freely available under FreeBSD style licensing

model. MPAC library is not only beneficial for benchmarking

recent multi-core processor architectures and high performance

networking systems but can also be used for traditional single

core and symmetric multiprocessor (SMP) systems. MPAC

library includes different APIs related to concurrent

benchmarking activities targeting various system resources, such

as processors, memory, I/O devices, network, operating system,

system software, and application. The software package also

includes sample reference benchmarks using this library.

MPAC library is not only beneficial for benchmarking recent

multi-core processor architectures and high performance

networking systems but can also be used for traditional single-

core and symmetric multiprocessor (SMP) systems. MPAC

library includes different APIs related to concurrent

benchmarking activities targeting various system resources, such

as processors, memory, I/O devices, network, operating system,

system software, and application. The software package also

includes sample reference benchmarks using this library.

Fig. 4 provides an overview of MPAC’s software architecture. It

provides an implementation of some commons tasks, such as

measurement of timer resolution, determination of loop

overhead, accurate interval timers, and other statistical and

experimental design related functions, which may be too time

consuming to be written by a regular user. However, these ideas

are fundamental to accurate and repeatable measurement based

evaluation.

Figure 4. A high-level architecture of MPAC Library’s

extensible benchmarking infrastructure.

Figure 5 shows an overview of MPAC fork-and-join based

execution model. In the following subsections, we provide details

about various MPAC modules that can be used through its API.

Figure 5. Overview of MPAC Benchmark fork and join

infrastructure

3.1 MPAC Initialization
For accurate and reliable performance measurements, every

benchmark needs to account for various measurement

overheads. MPAC library provides an initialization function

that measures timing overheads, loop overheads, clock

resolutions, minimum time duration of a task that can be

measured and the number of cores of the SUT. These estimates

can be used to remove the effect of overheads from the user

measured values to increase the accuracy and precision of the

developed benchmark. The number of cores helps the user to

determine the number of threads that user will create for

benchmarking the SUT.

3.2 Thread Manager
Developing multithreaded benchmarks require thread creation,

execution control, and termination. The types of thread vary for

different tasks. A user may require a thread to terminate after it

has completed its task or wait for other threads to complete their

tasks and terminate together. MPAC library provides a Thread

Manager (TM), which facilitates handling thread related

activities transparently from the end user. It offers high level

functions to manage the life cycle of user-specified thread pool of

non-interacting workers. It is based on a fork-and-join threading

model for concurrent execution of same workload on all

processor cores. Thread manager functions are described in the

following subsections.

3.2.1 Thread Creation:

As thread creation and termination is an integral part of

multithreaded applications, the TM provides two functions for

thread creation depending on the user specification of

joinable or detachable threads. The TM facilitates the user

by providing a single function call that initializes creates,

joins/detaches, and frees resources of a thread pool.

3.2.2 Thread locking
Dealing with threads can sometimes be a cumbersome task that

includes ordering of tasks, waiting for certain conditions to be

met before starting a task, synchronizing threads, and so on.

The TM provides user- friendly wrapper functions to

incorporate thread locking. Sometimes, user specification

requires synchronizing the threads to start or end their

execution for timing purpose. The TM implements a barrier

synchronization mechanism.

3.2.3 Thread Affinity:
A user may require a task to execute on a specific processor core.

Thread affinity ensures that unrelated latencies due to

contention for shared L2 cache or bus among a group of cores

does not impact measurements in an unexpected manner. The

TM provides two methods of implementing thread affinity;

binding threads to cores in a round robin fashion at

initialization phase or according to user specification.

3.3 Time Measurement
The most common task in benchmarking is the time

measurements. The MPAC Library provides the functionality for

measuring the execution time of a task as well as to execute a

task for a desired duration. User specifications are executed

repeatedly during this interval. It is essential to estimate the loop

as well as timing system call overhead for accurate

benchmarking. Our sample benchmarks subtract these values

from the measured execution time, for precision.

3.4 Statistics Measurement
The MPAC library provides the Statistics Interface with common

statistics functions such as mean, mode, median, minimum,

maximum, variance, standard deviation, and confidence interval.

The users can extend this interface along similar terms,

according to their requirement

3.5 I/O Interface
Performance measurements targeting communication among

processes, storage devices, and networks require many small but

tedious Input/Output functions. The MPAC library provides an

Input/Output interface, which includes commonly used file and

network I/O functions for file handling, reporting, logging, data

storage, communication initialization, communication tear-down,

etc.

3.6 Benchmark Development
A four step generic procedure is required to develop any

benchmark using MPAC library: (1) declarations; (2) thread

routine; (3) thread creation; and (4) optional final calculations

and garbage collection.

The declaration step initializes user input structure and thread

data structure variables. The thread routine requires the writing

of benchmark specification, which is to be executed by threads.

Thread creation phase creates a joinable or detachable thread

pool according to user requirement using TM. The optional

calculations and garbage collection step, in case of joinable

threads, performs the final calculations, displaying output and

releasing the resources acquired.

4. MPAC BENCHMARKS
To evaluate MPAC benchmarks, we consider the specifications

of well-known processors. We compare the measurements of

these existing benchmarks with the benchmarks developed

through MPAC library on various x86 and MIPS64 architectures

for single thread. The Specifications for these processors is given

in table 1.

4.1 CPU Benchmark
We develop an MPAC based CPU benchmark, that exercises the

floating point, integer and logic unit of the processor, to measure

the CPU scaling with number of cores. In absence of any memory

accesses, we expect a linear scale-up of CPU benchmark

throughput (as operations per second) with number of cores. We

can use this criterion for validating the CPU benchmark.

The throughput of different arithmetic and logical operation

across number of threads for different SUTs. It is observed that

the throughput scales linearly across number of threads as

expected. The magnitudes of CPU benchmark throughputs are

different across these platforms due to differences in micro-

architectures of three multi-core processors: Intel quad-core

Xeon, AMD dual-core Opteron, and Cavium 16-core Octeon.

Linear scalability for CPU operations as well as across platforms

validates benchmark.

Figure 5.1 sin

Table 1. Specifications of Systetms Under Tests

Figure 5.2 Summation

Figure 5.3 String Operation

4.2 Memory Benchmark
The MPAC memory benchmark takes the number of threads,

data size, data type, affinity flag, and number of repetitions as

input from user. To validate the results of MPAC, we compare it

with steam benchmark’s default results on the SUTS which is

shown in table 2. The percentage of deviation is from 2 – 5 %,

which is relatively small, thus validating the results of MPAC

benchmarking. Fig. 6 shows memory throughput versus number

of threads of MPAC memory benchmark using floating point data

for various data sizes for three SUTs. With data sizes of 4 KB,

16 KB and 1 MB, most of the memory accesses should hit L2

caches rather than the main memory. It is observed in Fig. 6 (a),

(b) and (c) that the throughput scales linearly[11]. Fig. 6 (d),

presents memory copy throughput for 16 MB of data size, which

results in up to two orders of magnitude longer execution times

compared to smaller data sizes in case of Intel based SUT.

In the case of Intel based SUT, memory copy throughput does not

scale linearly with the number of threads. In contrast to data

sizes of 16 KB, and 1 MB, which can fit in L2 caches, copying

16 MB require extensive memory accesses through shared bus.

Thus, throughput is lower compared to the cases where accesses

hit in L2 caches and saturates as the bus becomes a bottleneck.

Memory copy throughput saturates at around 40 Gbps.

Furthermore, throughput is constrained due to shared L2 cache

conflicts for up to four cores, but then starts increasing as

operations spread to other cores with thread affinity. This process

continues until the bus becomes a secondary bottleneck. This

result is consistent with the measurements reported in for a

similar dual quad-core based system. On the other hand,

throughput scales linearly for AMD and Cavium based SUT, for

16 MB of data size, due to their more efficient low-latency

memory controllers instead of a shared system bus.

Figure 6.1: 4kb

Platform Attributes Systems under Test

Processor Quad Core Intel® Xeon® E5405 Dual Core AMD Opteron Proc 2212HE Cavium Octeon CN3860

CPU-Memory Bus Speed 1333 MHz FSB 1000 MHz Hyperport Bus 333 MHz

Physical CPU chips 2 2 1

No. of Cores 2 x 4 = 8 2 x 2 = 4 16

CPU Speed 2.0 GHz 2.0 GHz 500 MHz

L1 D Cache 32 KB 64 KB 8 KB

L1 I Cache 32 KB 64 KB 32 KB

L2 Cache 2 x (2 x 6) = 24 MB 2x(2x1) = 4 MB 1 MB shared

DRAM Size 8 GB 8 GB 4 GB

OS Version 2.6.23.1-42, Fedora core 8 2.6.23.1-42, Fedora core 8 Debian 2.6.16.26

Compiler gcc 4.1.2, -O3 gcc 4.1.2, -O3 gcc 4.1.2, -O3

Figure 6.2 16Kb

Figure 6.3 1Mb

Figure 6.4 16Mb

Table 2. Throughput in Mbps of Memory-To-Memory Copy

of 16 Mb Floating Point Data on Different SUTs for N=1

SUT Stream Benchmark MPAC Benchmark
%

Deviation

Intel 27905 26434 5.3

AMD 16172 15744 2.6

Caviu

m

6.23 5.89 5.5

4.3 Network Benchmark
To validate the results of MPAC network benchmark, we

compare the results with Netperf benchmark results on the SUTs.

From the table 3, we can confirm that the deviation between

Netperf benchmark results and MPAC network benchmark is too

small and hence our results are valid. Fig. 10 presents scalability

characteristics of the throughput of end-to-end network data

transfer on different SUTs using MPAC network benchmark.

TCP client and server threads send and receive message,

respectively, using loop-back interface.

This use case exercise memory-to-memory copy throughput with

TCP stack level processing within the kernel. However, this does

not involve any traffic over physical network, which is limited to

1 Gbps throughput. Thus, using loop-back interface, we avoid the

limitation of physical network throughput for running these

network benchmark use cases to compare scalability

characteristics across three architectures. An increase in

throughput is observed across TCP client and server thread pairs

when the number of threads increases. With more threads,

scheduling overheads due to thread-exclusive TCP message

dispatching for each client-server pair prevents hitting the bus

throughput limit for Intel, AMD and Cavium SUT.

Table 3. Throughput in Mbps of End-To-End Network Data

Transfer on Different SUTs For N=1 Using Loop-Back

Interface

SUT Netperf Benchmark MPAC Benchmark
%

Deviation

Intel 6760 6624 2.0

AMD 4276 4200 1.8

Caviu

m

2514 2467 1.9

Figure 7. Throughput in Gbps of end-to-end network data

transfer across number of threads for different SUTs

5. MULTICORE CHALLENGES
Having multiple cores on a single chip gives rise to some

problems and challenges. Power and temperature management

are two concerns that can increase exponentially with the

addition of multiple cores. Memory/cache coherence is another

challenge, since all designs discussed above have distributed L1

and in some cases L2 caches which must be coordinated. And

finally, using a multicore processor to its full potential is another

issue. If programmers don't write applications that take

advantage of multiple cores there is no gain, and in some cases

there is a loss of performance. Application need to be written so

that different parts can be run concurrently (without any ties to

another part of the application that is being run simultaneously).

5.1 Power and Temperature
If two cores were placed on a single chip without any

modification, the chip would, in theory, consume twice as much

power and generate a large amount of heat. In the extreme case,

if a processor overheats your computer may even combust. To

account for this each design above runs the multiple cores at a

lower frequency to reduce power consumption.

To combat unnecessary power consumption many designs also

incorporate a power control unit that has the authority to shut

down unused cores or limit the amount of power. By powering

off unused cores and using clock gating the amount of leakage in

the chip is reduced.

To lessen the heat generated by multiple cores on a single chip,

the chip is architected so that the number of hot spots doesn’t

grow too large and the heat is spread out across the chip. As seen

in Figure 7, the majority of the heat in the CELL processor is

dissipated in the Power Processing Element and the rest is

spread across the Synergistic Processing Elements. The CELL

processor follows a common trend to build temperature

monitoring into the system, with its one linear sensor and ten

internal digital sensors.

Figure 8 CELL Thermal Diagram

5.2 Cache Coherence
Cache coherence is a concern in a multicore environment because

of distributed L1 and L2 cache. Since each core has its own

cache, the copy of the data in that cache may not always be the

most up-to-date version. For example, imagine a dual-core

processor where each core brought a block of memory into its

private cache. One core writes a value to a specific location;

when the second core attempts to read that value from its cache it

won't have the updated copy unless its cache entry is invalidated

and a cache miss occurs. This cache miss forces the second core's

cache entry to be updated. If this coherence policy wasn’t in

place garbage data would be read and invalid results would be

produced, possibly crashing the program or the entire computer.

In general there are two schemes for cache coherence, a snooping

protocol and a directory-based protocol. The snooping protocol

only works with a bus-based system, and uses a number of states

to determine whether or not it needs to update cache entries and

if it has control over writing to the block. The directory-based

protocol can be used on an arbitrary network and is, there- fore,

scalable to many processors or cores, in contrast to snooping

which isn't scalable. In this scheme a directory is used that holds

information about which memory locations are being shared in

multiple caches and which are used exclusively by one core's

cache. The directory knows when a block needs to be updated or

invalidated.

Intel's Core 2 Duo tries to speed up cache coherence by being

able to query the second core's L1 cache and the shared L2 cache

simultaneously. Having a shared L2 cache also has an added

benefit since a coherence protocol doesn’t need to be set for this

level. AMD's Athlon 64 X2, however, has to monitor cache

coherence in both L1 and L2 caches. This is sped up using the

HyperTransport connection, but still has more overhead than

Intel’s model.

5.3 Multithreading
The last, and most important, issue is using multithreading or

other parallel processing techniques to get the most performance

out of the multicore processor. “With the possible exception of

Java, there are no widely used commercial development

languages with [multithreaded] ex- tensions.” Rebuilding

applications to be multithreaded means a complete rework by

programmers in most cases. Programmers have to write

applications with subroutines able to be run in different cores,

meaning that data dependencies will have to be resolved or

accounted for (e.g. latency in communication or using a shared

cache). Applications should be balanced. If one core is being

used much more than another, the programmer is not taking full

advantage of the multi- core system. Some companies have heard

the call and designed new products with multicore capabilities;

Microsoft and Apple's newest operating systems can run on up to

4 cores.

6. OPEN ISSUES

6.1 Improved Memory System
With numerous cores on a single chip there is an enormous need

for increased memory. 32-bit processors, such as the Pentium 4,

can address up to 4GB of main memory. With cores now using

64-bit addresses the amount of addressable memory is almost

infinite. An improved memory system is a necessity; more main

memory and larger caches are needed for multithreaded

multiprocessors.

6.2 System Bus and Interconnection Networks
Extra memory will be useless if the amount of time required for

memory requests doesn’t im- prove as well. Redesigning the

interconnection network between cores is a major focus of chip

manufacturers. A faster network means a lower latency in inter-

core communication and memory transactions. Intel is developing

their Quickpath interconnect, which is a 20-bit wide bus running

between 4.8 and 6.4 GHz; AMD's new HyperTransport 3.0 is a

32-bit wide bus and runs at 5.2 GHz. A different kind of

interconnect is seen in the TILE64's iMesh, which consists of

five networks used to fulfill I/O and off-chip memory

communication.

Using five mesh networks gives the Tile architecture a per tile

(or core) bandwidth of up to 1.28 Tbps (terabits per second). The

question remains though, which type of interconnect is best

suited for multicore processors? Is a bus-based approach better

than an interconnection network? Or is there a hybrid like the

mesh network that would work best?

6.3 Parallel Programming
To use multicore, you really have to use multiple threads. If you

know how to do it, it's not bad. But the first time you do it there

are lots of ways to shoot yourself in the foot. The bugs you

introduce with multithreading are so much harder to find.

In May 2007, Intel fellow Shekhar Borkar stated that “The

software has to also start following Moore's Law, software has to

double the amount of parallelism that it can support every two

years.” Since the number of cores in a processor is set to double

every 18 months, it only makes sense that the software running

on these cores takes this into account. Ultimately, programmers

need to learn how to write parallel programs that can be split up

and run concurrently on multiple cores instead of trying to

exploit single-core hardware to increase parallelism of sequential

programs.

Developing software for multicore processors brings up some

latent concerns. How does a programmer ensure that a high-

priority task gets priority across the processor, not just a core? In

theory even if a thread had the highest priority within the core on

which it is running it might not have a high priority in the system

as a whole. Another necessary tool for developers is debugging.

However, how do we guarantee that the entire system stops and

not just the core on which an application is running?

These issues need to be addressed along with teaching good

parallel programming practices for developers. Once

programmers have a basic grasp on how to multithread and

program in parallel, instead of sequentially, ramping up to follow

Moore's law will be easier.

6.4 Starvation
If a program isn't developed correctly for use in a multicore

processor one or more of the cores may starve for data. This

would be seen if a single-threaded application is run in a

multicore system. The thread would simply run in one of the

cores while the other cores sat idle. This is an extreme case, but

illustrates the problem.

With a shared cache, for example Intel Core 2 Duo's shared L2

cache, if a proper replacement policy isn't in place one core may

starve for cache usage and continually make costly calls out to

main memory. The replacement policy should include

stipulations for evicting cache entries that other cores have

recently loaded. This becomes more difficult with an increased

number of cores effectively reducing the amount of evitable

cache space without increasing cache misses.

6.5 Homogeneous vs. Heterogeneous Cores
Architects have debated whether the cores in a multicore

environment should be homogeneous or heterogeneous, and there

is no definitive answer...yet. Homogenous cores are all exactly

the same: equivalent frequencies, cache sizes, functions, etc.

However, each core in a heterogeneous system may have a

different function, frequency, memory model, etc. There is an

apparent trade- off between processor complexity and

customization. All of the designs discussed above have used

homogeneous cores except for the CELL processor, which has

one Power Processing Element and eight Synergistic Processing

Elements.

Homogeneous cores are easier to produce since the same

instruction set is used across all cores and each core contains the

same hardware. But are they the most efficient use of multicore

technology?

Each core in a heterogeneous environment could have a specific

function and run its own specialized instruction set. Building on

the CELL example, a heterogeneous model could have a large

centralized core built for generic processing and running an OS,

a core for graphics, a communications core, an enhanced

mathematics core, an audio core, a cryptographic core, and the

list goes on. This model is more complex, but may have

efficiency, power, and thermal benefits that outweigh its

complexity. With major manufacturers on both sides of this

issue, this debate will stretch on for years to come; it will be

interesting to see which side comes out on top.

7. Conclusion
Before multicore processors the performance increase from

generation to generation was easy to see, an increase in

frequency. This model broke when the high frequencies caused

processors to run at speeds that caused increased power

consumption and heat dissipation at detrimental levels. Adding

multiple cores within a processor gave the solution of running at

lower frequencies, but added interesting new problems.

We presented open-source MPAC benchmarking library that

provides a common extensible benchmarking infrastructure. It

can be leveraged to ease the development of specification-

based micro-benchmarks, application benchmarks, and network

traffic load generators for state-of-the-art multi-core processors

based platforms. We implemented the specifications of Stream

and Netperf micro-benchmarks using MPAC library and

validated our MPAC based performance measurements on

Intel, AMD, and Cavium based multi-core platforms using these

benchmarks for single thread executions.

Multicore processors are architected to adhere to reasonable

power consumption, heat dissipation, and cache coherence

protocols. However, many issues remain unsolved. In order to

use a multicore processor at full capacity the applications run on

the system must be multithreaded. There are relatively few

applications (and more importantly few programmers with the

know-how) written with any level of parallelism. The memory

systems and interconnection networks also need improvement.

And finally, it is still unclear whether homogeneous or

heterogeneous cores are more efficient.

8. REFERENCES
[1] W. Knight, “Two Heads Are Better Than One”, IEEE

Review, September 2005

[2] R. Merritt, “CPU Designers Debate Multi-core Future”,

EETimes Online, February 2008

[3] P. Frost Gorder, “Multicore Processors for Science and

Engineering”, IEEE CS, March/April 2007

[4] D. Geer, “Chip Makers Turn to Multicore Processors”,

Computer, IEEE Computer Society, May 2005

[5] L. Peng et al, “Memory Performance and Scalability of

Intel‟s and AMD‟s Dual-Core Processors: A Case Study”,

IEEE, 2007

[6] D. Pham et al, “The Design and Implementation of a First-

Generation CELL Processor”, ISSCC

[7] P. Hofstee and M. Day, “Hardware and Software Architecture

for the CELL Processor”, CODES+ISSS ‟05, September

2005

 [8] J. Kahle, “The Cell Processor Architecture”, MICRO-38

Keynote, 2005

[9] D. Stasiak et al, “Cell Processor Low-Power Design

Methodology”, IEEE MICRO, 2005

[10] D. Pham et al, “Overview of the Architecture, Circuit

Design, and Physical Implementation of a First-Generation

CeCell Processor”, IEEE Journal of Solid-State Circuits,

Vol. 41, No. 1, January 2006

[11] M. Hasan Jamal, Ghulam Mustafa, Abdul Waheed and

Waqar Mahmood, An Extensible Infrastructure for

Benchmarking Multi-Core Processors based Systems, IEEE

SPECTS 2009

[12] Mikiko Sato, Yuji Sato, Member, IEEE and Mitaro Namiki,

Member, IEEE, Proposal of a Multi-core Processor from the

Viewpoint of Evolutionary Computation, IEEE 2010

