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ABSTRACT 
With advance in prevalence personal computers, the end - 

user needs faster and more capable systems. This can be 

achieved by increasing the clock speed or adding multiple 

processing cores to the same chip. But this is an old trend, so 

manufacturers are focusing multicore processors. The use of 

low cost multicore processors with small-scale parallelism of 

several or several processing units has been spread to general 

purpose personal computers. In this paper, we focus on 

implementing multicore processor architecture to 

evolutionary computation. With large use of multicore 

processors, we focus on benchmarking these systems at 

operating system level. So we introduce multicore processor 

architecture and communication (MPAC). We use 

these benchmark techniques to validate MPAC based 

performance analysis on Intel, AMD multicore based 

platforms.  

1. INTRODUCTION 

Since the early 1990s, research on methods for boosting up 

evolutionary computation through implementations on massively 

parallel computers has been quite active. Besides, the use of 

multicore processors has recently been expanding even in 

general purpose personal computers. In this paper, we 

present the description that all CPUs in a multi-core processor be 

able to directly reference the local memory of each core without 

having to go through main memory. So we target the 

improvement in the execution performance of evolutionary 

computation and to reduce the energy (power) consumption. 

Performance benchmarking depends on development methods 

and specialized knowledge which lead to the problems: portable 

and accurate time measurement, execution control and 

repetitions, experimental design, statistical analyses of 

measurements and presentation of results. So design and 

development organizations need micro-benchmarks to fully 

understand the performance impact of state-of-the-art processors 

based computing platforms to host their new products. Present 

benchmarking practice depend on two contradictory 

methodologies: using well-known industry standard benchmarks 

or developing customized benchmarks. Industry standard 

benchmarks provide baseline performance for a system or a 

platform. Customized benchmarks are for evolving processor, 

memory, network and storage architecture. Such benchmarks 

implement customized workload specifications that are 

significant to the prototype, they may not be reused for any other 

platform or application performance. Thus these both 

technologies do not serve the need of rapidly evolving computer 

sub-systems, including multi-core processors, complex memory 

subsystems and high-performance interconnects. So we use 

specification based benchmarking as an alternative to the 

existing benchmarking techniques. The primary objective of NAS 

Parallel Benchmark was to use a paper-and-pencil specification 

of a problem to be solved on the target system rather than using a 

specific benchmark code. This approach lets vendors to write an 

optimized code with their own choices of language, compiler, 

and run-time system for their target architecture. So develop a 

multi-core processor architecture and communication (MPAC) 

framework, which is an open source C-based, POSIX-complaint, 

benchmarking library and is freely available. MPAC library is 

portable across hardware platforms and hence we present details 

of this benchmarking framework. 

 

2. MULTICORE PROCESSOR 
A multicore processor is a computing component with more than 

one central processing units or cores. A core is a unit that reads 

and executes instruction, but a multicore processor can run 

multiple instruction at the same time, thus increasing the speed 

and performance of the system. This improvement in 

performance may be gained by the software algorithm used in it 

and its implementation. 

2.1 A Brief History of Microprocessors 
Intel manufactured the first microprocessor, the 4-bit 4004, in the 

early 1970s which was basically just a number-crunching 

machine. Shortly afterwards they developed the 8008 and 8080, 

both 8-bit, and Motorola followed suit with their 6800 which was 

equivalent to Intel's 8080. The companies then fabricated 16-bit 

microprocessors, Motorola had their 68000 and Intel the 8086 

and 8088; the former would be the basis for Intel's 80386 32-bit 

and later their popular Pentium lineup which were in the first 

consumer-based PCs. Each generation of processors grew 

smaller, faster, dissipated more heat, and consumed more power.  

2.2 Moore's Law  
One of the guiding principles of computer architecture is known 

as Moore's Law. In 1965 Gordon Moore stated that the number of 

transistors on a chip will roughly double each year (he later 

refined this, in 1975, to every two years). What is often quoted as 

Moore's Law is Dave House’s revision that computer 

performance will double every 18 months. 

The graph in fig.1 plots initial processors with number of 

transistors per chip. The number of transistors has roughly 

doubled every 2 years. Moore's law continues to reign; for 

example, if the current trend continues to 2020, the number of 
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transistors would reach 32 billion. House's prediction, however, 

needs another correction. Throughout the 1990's and the earlier 

part of this decade microprocessor frequency was synonymous 

with performance; higher frequency meant a faster, more capable 

computer. Since processor frequency has reached a plateau, we 

must now consider other aspects of the overall performance of a 

system: power consumption, temperature dissipation, frequency, 

and number of cores. Multicore processors are often run at 

slower frequencies, but have much better performance than a 

single-core processor. 

 

Figure 1. Microprocessor Transistor Counts & Moore’s Law 

2.3 Configuration of Multicore processors 
Multi-core processors have come to be installed in many types of 

computing equipment in recent years. In fact, multi-core 

processors equipped with multiple general purpose cores of the 

same type (homogeneous multi-core processors) are coming to be 

installed even in PCs. In the following, “multi-core processor” 
refers to a homogeneous multi-core processor. Obtaining better 

performance through the use of multi-core processors is not only 

a matter of integrating multiple cores, but also high memory-

access performance that matches CPU operational ability is 

necessary. Memory-access performance has traditionally been 

improved by increasing the capacity of cache memory, but such 

an approach increases the area of the processor and drives up 

energy consumption. In addition, increasing the number of cores 

means more control overhead for maintaining coherence between 

caches, which can lead to a drop in performance. In response to 

these problems, the use of local memory called scratchpad 

memory (SPM) inside a core has been attracting attention since 

this kind of memory can achieve the same access performance as 

cache memory while having an energy-saving effect.  The basic 

configuration of a typical multi-core processor equipped with 

local memory is shown in Figure 2. In this configuration, 

multiple cores, each consisting of a CPU and local memory, 

connect to main memory via a system bus. Here, it is generally 

specified that local memory in each core be several KB to 

several hundred KB in capacity in accordance with chip area 

and that read/write operations be limited to that core[12]. 

Thus, if one core needs to reference the data stored in the 

local memory of another core, it can only do so after that data 

has been moved to main memory. Typical data read/write 

speeds (number of clock cycles) among the CPU, local 

memory, and cache memory that configure each core are shown 

in Figure 3. Compared to data read/write speeds between the 

CPU and cache/local memories, those between main memory 

and cache/local memories are as much as 100 times slower. 

In addition, while transfers between main memory and cache 

memory are controlled by hardware, those between main memory 

and local memory are all controlled by software. Thus, if transfer 

control between main memory and local memory has to be 

performed frequently, transfer overhead will increase leading to 

a drop in performance. It is essential that this overhead in 

transfer control between main memory and local memory be 

decreased to make effective use of local memory. 

 

Figure 2. Basic Configuration of multi-core processor 

 
Figure 3. Core configuration and data Read/Write speeds 

 

3. SOFTWARE ARCHITECTURE OF 

MPAC 
MPAC library provides a common benchmarking infrastructure 

that eases the development of specification-based micro-

benchmarks, application benchmarks, and network traffic load 

generators for state-of-the-art multi-core processors based 

computing and networking platforms by leveraging hardware and 

operating system resources. MPAC Library uses multiple threads 

in a fork-and-join approach that helps simultaneously exercise 

multiple processor cores of a system under test (SUT) according 

to user specified workload.  



 

 

The flexibility of MPAC software architecture allows a user to 

generate specification driven workload for micro-benchmarking 

without any parallelism. MPAC library allows the user to 

implement suitable experimental control and allows the same 

workload to be replicated across multiple processors or cores 

using a fork and join parallelism. Hence, user can focus on 

specifying the measurement-based experiment and evaluating the 

results instead of implementing common benchmarking tasks.  

MPAC library is an open source C-based, POSIX complaint, 

library, which is freely available under FreeBSD style licensing 

model. MPAC library is not only beneficial for benchmarking 

recent multi-core processor architectures and high performance 

networking systems but can also be used for traditional single 

core and symmetric multiprocessor (SMP) systems. MPAC 

library includes different APIs related to concurrent 

benchmarking activities targeting various system resources, such 

as processors, memory, I/O devices, network, operating system, 

system software, and application. The software package also 

includes sample reference benchmarks using this library. 

MPAC library is not only beneficial for benchmarking recent 

multi-core processor architectures and high performance 

networking systems but can also be used for traditional single- 

core and symmetric multiprocessor (SMP) systems. MPAC 

library includes different APIs related to concurrent 

benchmarking activities targeting various system resources, such 

as processors, memory, I/O devices, network, operating system, 

system software, and application. The software package also 

includes sample reference benchmarks using this library. 

Fig. 4 provides an overview of MPAC’s software architecture. It 

provides an implementation of some commons tasks, such as 

measurement of timer resolution, determination of loop 

overhead, accurate interval timers, and other statistical and 

experimental design related functions, which may be too time 

consuming to be written by a regular user. However, these ideas 

are fundamental to accurate and repeatable measurement based 

evaluation. 

 

Figure 4. A high-level architecture of MPAC Library’s 

extensible benchmarking infrastructure. 

Figure 5 shows an overview of MPAC fork-and-join based 

execution model. In the following subsections, we provide details 

about various MPAC modules that can be used through its API. 

 

Figure 5. Overview of MPAC Benchmark fork and join 

infrastructure 

3.1 MPAC Initialization 
For accurate and reliable performance measurements, every 

benchmark needs to account for various measurement 

overheads. MPAC library provides an initialization function 

that measures timing overheads, loop overheads, clock 

resolutions, minimum time duration of a task that can be 

measured and the number of cores of the SUT. These estimates 

can be used to remove the effect of overheads from the user 

measured values to increase the accuracy and precision of the 

developed benchmark. The number of cores helps the user to 

determine the number of threads that user will create for 

benchmarking the SUT. 

3.2 Thread Manager 
Developing multithreaded benchmarks require thread creation, 

execution control, and termination. The types of thread vary for 

different tasks. A user may require a thread to terminate after it 

has completed its task or wait for other threads to complete their 

tasks and terminate together. MPAC library provides a Thread 

Manager (TM), which facilitates handling thread related 

activities transparently from the end user. It offers high level 

functions to manage the life cycle of user-specified thread pool of 

non-interacting workers. It is based on a fork-and-join threading 

model for concurrent execution of same workload on all 

processor cores. Thread manager functions are described in the 

following subsections. 

 

 



 

 

3.2.1 Thread Creation: 

As thread creation and termination is an integral part of 

multithreaded applications, the TM provides two functions for 

thread creation depending on the user specification of 

joinable or detachable threads. The TM facilitates the user 

by providing a single function call that initializes creates, 

joins/detaches, and frees resources of a thread pool. 

3.2.2 Thread locking 
Dealing with threads can sometimes be a cumbersome task that 

includes ordering of tasks, waiting for certain conditions to be 

met before starting a task, synchronizing threads, and so on. 

The TM provides user- friendly wrapper functions to 

incorporate thread locking. Sometimes, user specification 

requires synchronizing the threads to start or end their 

execution for timing purpose. The TM implements a barrier 

synchronization mechanism. 

3.2.3 Thread Affinity: 
A user may require a task to execute on a specific processor core. 

Thread affinity ensures that unrelated latencies due to 

contention for shared L2 cache or bus among a group of cores 

does not impact measurements in an unexpected manner. The 

TM provides two methods of implementing thread affinity; 

binding threads to cores in a round robin fashion at 

initialization phase or according to user specification. 

3.3 Time Measurement 
The most common task in benchmarking is the time 

measurements. The MPAC Library provides the functionality for 

measuring the execution time of a task as well as to execute a 

task for a desired duration. User specifications are executed 

repeatedly during this interval. It is essential to estimate the loop 

as well as timing system call overhead for accurate 

benchmarking. Our sample benchmarks subtract these values 

from the measured execution time, for precision. 

3.4 Statistics Measurement 
The MPAC library provides the Statistics Interface with common 

statistics functions such as mean, mode, median, minimum, 

maximum, variance, standard deviation, and confidence interval. 

The users can extend this interface along similar terms, 

according to their requirement 

3.5 I/O Interface 
Performance measurements targeting communication among 

processes, storage devices, and networks require many small but 

tedious Input/Output functions. The MPAC library provides an 

Input/Output interface, which includes commonly used file and 

network I/O functions for file handling, reporting, logging, data 

storage, communication initialization, communication tear-down, 

etc. 

3.6 Benchmark Development 
A four step generic procedure is required to develop any 

benchmark using MPAC library: (1) declarations; (2) thread 

routine; (3) thread creation; and (4) optional final calculations 

and garbage collection. 

The declaration step initializes user input structure and thread 

data structure variables. The thread routine requires the writing 

of benchmark specification, which is to be executed by threads. 

Thread creation phase creates a joinable or detachable thread 

pool according to user requirement using TM. The optional 

calculations and garbage collection step, in case of joinable 

threads, performs the final calculations, displaying output and 

releasing the resources acquired. 

4. MPAC BENCHMARKS 
To evaluate MPAC benchmarks, we consider the specifications 

of well-known processors. We compare the measurements of 

these existing benchmarks with the benchmarks developed 

through MPAC library on various x86 and MIPS64 architectures 

for single thread. The Specifications for these processors is given 

in table 1. 

4.1 CPU Benchmark 
We develop an MPAC based CPU benchmark, that exercises the 

floating point, integer and logic unit of the processor, to measure 

the CPU scaling with number of cores. In absence of any memory 

accesses, we expect a linear scale-up of CPU benchmark 

throughput (as operations per second) with number of cores. We 

can use this criterion for validating the CPU benchmark. 

The throughput of different arithmetic and logical operation 

across number of threads for different SUTs. It is observed that 

the throughput scales linearly across number of threads as 

expected. The magnitudes of CPU benchmark throughputs are 

different across these platforms due to differences in micro-

architectures of three multi-core processors: Intel quad-core 

Xeon, AMD dual-core Opteron, and Cavium 16-core Octeon. 

Linear scalability for CPU operations as well as across platforms 

validates benchmark. 

 

Figure 5.1 sin 

 

 

 

 

 

 

 



 

 

Table 1. Specifications of Systetms Under Tests 

 

 

Figure 5.2 Summation 

 

Figure 5.3 String Operation 

4.2 Memory Benchmark 
The MPAC memory benchmark takes the number of threads, 

data size, data type, affinity flag, and number of repetitions as 

input from user. To validate the results of MPAC, we compare it 

with steam benchmark’s default results on the SUTS which is 

shown in table 2. The percentage of deviation is from 2 – 5 %, 

which is relatively small, thus validating the results of MPAC 

benchmarking. Fig. 6 shows memory throughput versus number 

of threads of MPAC memory benchmark using floating point data 

for various data sizes for three SUTs. With data sizes of 4 KB, 

16 KB and 1 MB, most of the memory accesses should hit L2 

caches rather than the main memory. It is observed in Fig. 6 (a), 

(b) and (c) that the throughput scales linearly[11]. Fig. 6 (d), 

presents memory copy throughput for 16 MB of data size, which 

results in up to two orders of magnitude longer execution times 

compared to smaller data sizes in case of Intel based SUT. 

 

In the case of Intel based SUT, memory copy throughput does not 

scale linearly with the number of threads. In contrast to data 

sizes of 16 KB, and 1 MB, which can fit in L2 caches, copying 

16 MB require extensive memory accesses through shared bus. 

Thus, throughput is lower compared to the cases where accesses 

hit in L2 caches and saturates as the bus becomes a bottleneck. 

Memory copy throughput saturates at around 40 Gbps. 

Furthermore, throughput is constrained due to shared L2 cache 

conflicts for up to four cores, but then starts increasing as 

operations spread to other cores with thread affinity. This process 

continues until the bus becomes a secondary bottleneck. This 

result is consistent with the measurements reported in for a 

similar dual quad-core based system. On the other hand, 

throughput scales linearly for AMD and Cavium based SUT, for 

16 MB of data size, due to their more efficient low-latency 

memory controllers instead of a shared system bus. 

 

Figure 6.1: 4kb 

Platform Attributes Systems under Test 

Processor Quad Core Intel® Xeon® E5405 Dual Core AMD Opteron Proc 2212HE Cavium Octeon CN3860 

CPU-Memory Bus Speed 1333 MHz FSB 1000 MHz Hyperport Bus 333 MHz 

Physical CPU chips 2 2 1 

No. of Cores 2 x 4 = 8 2 x 2 = 4 16 

CPU Speed 2.0 GHz 2.0 GHz 500 MHz 

L1 D Cache 32 KB 64 KB 8 KB 

L1 I Cache 32 KB 64 KB 32 KB 

L2 Cache 2 x (2 x 6 ) = 24 MB 2x(2x1) = 4 MB 1 MB shared 

DRAM Size 8 GB 8 GB 4 GB 

OS Version 2.6.23.1-42, Fedora core 8 2.6.23.1-42, Fedora core 8 Debian 2.6.16.26 

Compiler gcc 4.1.2, -O3 gcc 4.1.2, -O3 gcc 4.1.2, -O3 



 

 

 

Figure 6.2 16Kb 

 

Figure 6.3 1Mb 

 

Figure 6.4 16Mb 

Table 2. Throughput in Mbps of Memory-To-Memory Copy 

of 16 Mb Floating Point Data on Different SUTs for N=1 

SUT Stream Benchmark MPAC Benchmark 
% 

Deviation 

Intel 27905 26434 5.3 

AMD 16172 15744 2.6 

Caviu

m 

6.23 5.89 5.5 

 

 

4.3 Network Benchmark 
To validate the results of MPAC network benchmark, we 

compare the results with Netperf benchmark results on the SUTs. 

From the table 3, we can confirm that the deviation between 

Netperf benchmark results and MPAC network benchmark is too 

small and hence our results are valid. Fig. 10 presents scalability 

characteristics of the throughput of end-to-end network data 

transfer on different SUTs using MPAC network benchmark. 

TCP client and server threads send and receive message, 

respectively, using loop-back interface. 

This use case exercise memory-to-memory copy throughput with 

TCP stack level processing within the kernel. However, this does 

not involve any traffic over physical network, which is limited to 

1 Gbps throughput. Thus, using loop-back interface, we avoid the 

limitation of physical network throughput for running these 

network benchmark use cases to compare scalability 

characteristics across three architectures. An increase in 

throughput is observed across TCP client and server thread pairs 

when the number of threads increases. With more threads, 

scheduling overheads due to thread-exclusive TCP message 

dispatching for each client-server pair prevents hitting the bus 

throughput limit for Intel, AMD and Cavium SUT. 

Table 3. Throughput in Mbps of End-To-End Network Data 

Transfer on Different SUTs For N=1 Using Loop-Back 

Interface 

SUT Netperf Benchmark MPAC Benchmark 
% 

Deviation 

Intel 6760 6624 2.0 

AMD 4276 4200 1.8 

Caviu

m 

2514 2467 1.9 

 

Figure 7. Throughput in Gbps of end-to-end network data 

transfer across number of threads for different SUTs 

5. MULTICORE CHALLENGES 
Having multiple cores on a single chip gives rise to some 

problems and challenges. Power and temperature management 

are two concerns that can increase exponentially with the 

addition of multiple cores. Memory/cache coherence is another 

challenge, since all designs discussed above have distributed L1 

and in some cases L2 caches which must be coordinated. And 

finally, using a multicore processor to its full potential is another 

issue. If programmers don't write applications that take 



 

 

advantage of multiple cores there is no gain, and in some cases 

there is a loss of performance. Application need to be written so 

that different parts can be run concurrently (without any ties to 

another part of the application that is being run simultaneously). 

5.1 Power and Temperature 
If two cores were placed on a single chip without any 

modification, the chip would, in theory, consume twice as much 

power and generate a large amount of heat. In the extreme case, 

if a processor overheats your computer may even combust. To 

account for this each design above runs the multiple cores at a 

lower frequency to reduce power consumption.  

To combat unnecessary power consumption many designs also 

incorporate a power control unit that has the authority to shut 

down unused cores or limit the amount of power. By powering 

off unused cores and using clock gating the amount of leakage in 

the chip is reduced.  

To lessen the heat generated by multiple cores on a single chip, 

the chip is architected so that the number of hot spots doesn’t 

grow too large and the heat is spread out across the chip. As seen 

in Figure 7, the majority of the heat in the CELL processor is 

dissipated in the Power Processing Element and the rest is 

spread across the Synergistic Processing Elements. The CELL 

processor follows a common trend to build temperature 

monitoring into the system, with its one linear sensor and ten 

internal digital sensors. 

 

Figure 8 CELL Thermal Diagram 

5.2 Cache Coherence 
Cache coherence is a concern in a multicore environment because 

of distributed L1 and L2 cache. Since each core has its own 

cache, the copy of the data in that cache may not always be the 

most up-to-date version. For example, imagine a dual-core 

processor where each core brought a block of memory into its 

private cache. One core writes a value to a specific location; 

when the second core attempts to read that value from its cache it 

won't have the updated copy unless its cache entry is invalidated 

and a cache miss occurs. This cache miss forces the second core's 

cache entry to be updated. If this coherence policy wasn’t in 

place garbage data would be read and invalid results would be 

produced, possibly crashing the program or the entire computer.  

In general there are two schemes for cache coherence, a snooping 

protocol and a directory-based protocol. The snooping protocol 

only works with a bus-based system, and uses a number of states 

to determine whether or not it needs to update cache entries and 

if it has control over writing to the block. The directory-based 

protocol can be used on an arbitrary network and is, there- fore, 

scalable to many processors or cores, in contrast to snooping 

which isn't scalable. In this scheme a directory is used that holds 

information about which memory locations are being shared in 

multiple caches and which are used exclusively by one core's 

cache. The directory knows when a block needs to be updated or 

invalidated.  

Intel's Core 2 Duo tries to speed up cache coherence by being 

able to query the second core's L1 cache and the shared L2 cache 

simultaneously. Having a shared L2 cache also has an added 

benefit since a coherence protocol doesn’t need to be set for this 

level. AMD's Athlon 64 X2, however, has to monitor cache 

coherence in both L1 and L2 caches. This is sped up using the 

HyperTransport connection, but still has more overhead than 

Intel’s model. 

5.3 Multithreading 
The last, and most important, issue is using multithreading or 

other parallel processing techniques to get the most performance 

out of the multicore processor. “With the possible exception of 

Java, there are no widely used commercial development 

languages with [multithreaded] ex- tensions.” Rebuilding 

applications to be multithreaded means a complete rework by 

programmers in most cases. Programmers have to write 

applications with subroutines able to be run in different cores, 

meaning that data dependencies will have to be resolved or 

accounted for (e.g. latency in communication or using a shared 

cache). Applications should be balanced. If one core is being 

used much more than another, the programmer is not taking full 

advantage of the multi- core system. Some companies have heard 

the call and designed new products with multicore capabilities; 

Microsoft and Apple's newest operating systems can run on up to 

4 cores. 

6. OPEN ISSUES 

6.1 Improved Memory System 
With numerous cores on a single chip there is an enormous need 

for increased memory. 32-bit processors, such as the Pentium 4, 

can address up to 4GB of main memory. With cores now using 

64-bit addresses the amount of addressable memory is almost 

infinite. An improved memory system is a necessity; more main 

memory and larger caches are needed for multithreaded 

multiprocessors.  

6.2 System Bus and Interconnection Networks 
Extra memory will be useless if the amount of time required for 

memory requests doesn’t im- prove as well. Redesigning the 

interconnection network between cores is a major focus of chip 

manufacturers. A faster network means a lower latency in inter-

core communication and memory transactions. Intel is developing 

their Quickpath interconnect, which is a 20-bit wide bus running 

between 4.8 and 6.4 GHz; AMD's new HyperTransport 3.0 is a 

32-bit wide bus and runs at 5.2 GHz. A different kind of 



 

 

interconnect is seen in the TILE64's iMesh, which consists of 

five networks used to fulfill I/O and off-chip memory 

communication.  

Using five mesh networks gives the Tile architecture a per tile 

(or core) bandwidth of up to 1.28 Tbps (terabits per second). The 

question remains though, which type of interconnect is best 

suited for multicore processors? Is a bus-based approach better 

than an interconnection network? Or is there a hybrid like the 

mesh network that would work best?  

6.3 Parallel Programming 
To use multicore, you really have to use multiple threads. If you 

know how to do it, it's not bad. But the first time you do it there 

are lots of ways to shoot yourself in the foot. The bugs you 

introduce with multithreading are so much harder to find.  

In May 2007, Intel fellow Shekhar Borkar stated that “The 

software has to also start following Moore's Law, software has to 

double the amount of parallelism that it can support every two 

years.” Since the number of cores in a processor is set to double 

every 18 months, it only makes sense that the software running 

on these cores takes this into account. Ultimately, programmers 

need to learn how to write parallel programs that can be split up 

and run concurrently on multiple cores instead of trying to 

exploit single-core hardware to increase parallelism of sequential 

programs.  

Developing software for multicore processors brings up some 

latent concerns. How does a programmer ensure that a high-

priority task gets priority across the processor, not just a core? In 

theory even if a thread had the highest priority within the core on 

which it is running it might not have a high priority in the system 

as a whole. Another necessary tool for developers is debugging. 

However, how do we guarantee that the entire system stops and 

not just the core on which an application is running?  

These issues need to be addressed along with teaching good 

parallel programming practices for developers. Once 

programmers have a basic grasp on how to multithread and 

program in parallel, instead of sequentially, ramping up to follow 

Moore's law will be easier. 

6.4 Starvation 
If a program isn't developed correctly for use in a multicore 

processor one or more of the cores may starve for data. This 

would be seen if a single-threaded application is run in a 

multicore system. The thread would simply run in one of the 

cores while the other cores sat idle. This is an extreme case, but 

illustrates the problem.  

With a shared cache, for example Intel Core 2 Duo's shared L2 

cache, if a proper replacement policy isn't in place one core may 

starve for cache usage and continually make costly calls out to 

main memory. The replacement policy should include 

stipulations for evicting cache entries that other cores have 

recently loaded. This becomes more difficult with an increased 

number of cores effectively reducing the amount of evitable 

cache space without increasing cache misses. 

6.5 Homogeneous vs. Heterogeneous Cores 
Architects have debated whether the cores in a multicore 

environment should be homogeneous or heterogeneous, and there 

is no definitive answer...yet. Homogenous cores are all exactly 

the same: equivalent frequencies, cache sizes, functions, etc. 

However, each core in a heterogeneous system may have a 

different function, frequency, memory model, etc. There is an 

apparent trade- off between processor complexity and 

customization. All of the designs discussed above have used 

homogeneous cores except for the CELL processor, which has 

one Power Processing Element and eight Synergistic Processing 

Elements.  

Homogeneous cores are easier to produce since the same 

instruction set is used across all cores and each core contains the 

same hardware. But are they the most efficient use of multicore 

technology?  

Each core in a heterogeneous environment could have a specific 

function and run its own specialized instruction set. Building on 

the CELL example, a heterogeneous model could have a large 

centralized core built for generic processing and running an OS, 

a core for graphics, a communications core, an enhanced 

mathematics core, an audio core, a cryptographic core, and the 

list goes on. This model is more complex, but may have 

efficiency, power, and thermal benefits that outweigh its 

complexity. With major manufacturers on both sides of this 

issue, this debate will stretch on for years to come; it will be 

interesting to see which side comes out on top. 

7. Conclusion 
Before multicore processors the performance increase from 

generation to generation was easy to see, an increase in 

frequency. This model broke when the high frequencies caused 

processors to run at speeds that caused increased power 

consumption and heat dissipation at detrimental levels. Adding 

multiple cores within a processor gave the solution of running at 

lower frequencies, but added interesting new problems.  

We presented open-source MPAC benchmarking library that 

provides a common extensible benchmarking infrastructure. It 

can be leveraged to ease the development of specification-

based micro-benchmarks, application benchmarks, and network 

traffic load generators for state-of-the-art multi-core processors 

based platforms. We implemented the specifications of Stream 

and Netperf micro-benchmarks using MPAC library and 

validated our MPAC based performance measurements on 

Intel, AMD, and Cavium based multi-core platforms using these 

benchmarks for single thread executions. 

Multicore processors are architected to adhere to reasonable 

power consumption, heat dissipation, and cache coherence 

protocols. However, many issues remain unsolved. In order to 

use a multicore processor at full capacity the applications run on 

the system must be multithreaded. There are relatively few 

applications (and more importantly few programmers with the 

know-how) written with any level of parallelism. The memory 

systems and interconnection networks also need improvement. 

And finally, it is still unclear whether homogeneous or 

heterogeneous cores are more efficient.  
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