A time-dependent approach to the kinetics of homogeneous nucleation
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We present a time-dependent model for homogeneous nucleation and derive a time-dependent
solution to the coupled growth-rate equations for molecular cluster concentrations. A correction to
the monomer concentration growth-rate equation is applied, which accounts for the gain and loss of
molecules by all cluster populations. The condensation rate used considers all embryos to be in
motion, rather than assuming that only the monomers move. In order to allow for size-dependent
variations in a cluster's surface tension, the evaporation rate incorporates the revised
parametrization of Laaksonext al. [Phys. Rev. 49, 5517(1994)] of the homogeneous nucleation
theory of Dillmann and MeiefJ. Chem. Phys94 3872 (199])]. Eigenvalue analysis illuminates

how the steady-state is approached from the transient period and allows us to estimate the accuracy
of a steady-state approximation. It is shown that the distributions of clusters predicted by this theory
generate nucleation currents that are more accurate than those produced by other steady-state cluster
distributions. More importantly, this model can be used to calculate the time-dependent cluster
behavior for any nucleation model that has an expression for the change in Gibbs free energy. The
theory agrees well with the experimental data of Mili¢ral.[J. Chem. Phys78, 3204(1983] and
Viisanenet al.[J. Chem. Phys99 4680(1993], and with the theoretical predictions of Laaksonen

etal. © 1996 American Institute of Physids$s0021-960626)01901-5

I. INTRODUCTION Thermodynamically, the growth of a droplet is assumed
to be governed by the change in Gibbs free energy, which
Nucleation is the thermodynamic molecular process thatlassically has two terms: the first is the bulk energy of liquid
initiates many phase transitions. We observe nucleatiophase formation, which is negative and varies as the drop-
events on a day-to-day basis, some examples being cloudt’s volume; the second is the surface free energy, which is
creation (the formation of liquid droplets within a vapor positive and varies as the droplet's surface area. For very
making ice(the formation of solid crystals within a liquid  small molecular clusters, the surface energy dominates the
and boiling wate«the formation of gaseous bubbles within a bulk energy, but for larger clusters the bulk energy becomes
liquid). There is a strong motivation to study nucleation be-dominant. Therefore, the Gibbs free energy curve is initially
cause phase transitions are pervasive in many importagteep and increasing, but as a molecular clugterembryo
physical phenomena. In homogeneous nucleation, the nuclgrows, the curve reaches a maximum and then decreases, the
ating substance and its environment are assumed pure; thatgte of descent growing as the cluster gets largég. 1
are no foreign particles, such as dust, wall surfaces, or ionglepicts a modified version of this cujvdecause a thermo-
that can serve as sites for the onset of the phase chang#ynamic system will spontaneously tend to go to the lowest
Consequently, of all the nucleation theories, homogeneouSibbs free energy state, the maximum in the curve serves as
nucleation is the simplest. Its simplicity does not underminean activation barrier. Unless an embryo becomes large
its significance, however, as its concepts are applied by mamngnough to overcome this barrier, it will tend to decrease its
theorists to explain more complicated processes. Gibbs free energy by losing molecules by evaporation. The
The classical approach to homogeneous nucleation waduster size at which the activation barrier occurs is called the
originated and developed by Becker andring,' Farkas> critical size. Because the Gibbs curve is at a maximum, the
Frenkel® Volmer and Webet,and Zeldovict? an excellent critically sized cluster is at an unstable equilibrium with re-
two-part review is given by McDonalél’ The theory focuses spect to the supersaturated vapor. In other words, the vapor is
on the vapor-to-liquid phase transition and attempts to calcusaturated with respect to the surface of the embryos at the
late the time-independent rate of droplet formation within acritical size. Furthermore, the vapor is supersaturated with
given volume of vapor; this rate is called the steady-stateespect to the surfaces of supercritically sized clusters and
nucleation current. Molecular clusters are allowed to changsubsaturated with respect to the surfaces of subcritically
size only by gaining and losing single moleculesonomerg  sized clusters. This explains the tendency of supercritical
by condensation and evaporation. It is important to note thaémbryos to grow and subcritical embryos to shrink.
for a vapor-to-liquid transition, homogeneous nucleation will The classical theory of homogeneous nucleation uses the
take place only if the vapor is supersaturated. In other wordsGibbs free energy to calculate the time-independent distribu-
the ratio of the vapor pressure to the saturation vapor pregion of embryos for a supersaturated vapor constrained to be
sure must be greater than one; this ratio is called the supein complete thermodynamic equilibrium; this is called the
saturation ratio, and the saturated vapor pressure is defined dsalanced steady state” and is characterized by a steady-
the pressure of a saturated vapor over a plane liquid surfacetate nucleation current equal to zero. The constrained equi-
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xi0® ; tions considerably simplifies the mathematics of the classical
' theory. When the previous two assumptions have been made,
it is not difficult to obtain the value of the steady-state nucle-
ation current. The classical theory usually concludes with
this calculation.

At first, experimentalists found the agreement between
the classical theory and experiment to be generally §o&d.
Unfortunately, they were not measuring nucleation rates;
they were measuring the supersaturation ratios at which the
steady-state current was equal to one droplet formed per cu-
bic centimeter per second. The classical theory agreed with
these measurements. In the last two decades, however, it has
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nitude, the theoretical agreement worsens, the predictions be-
FIG. 1. The Gibbs free energy, as modified by Laaksaeteal. (Ref. 14, is ~ ing consistently too high. Furthermore, the observed tem-
compared with the rates of condensation and evaporation for water vapgserature dependence of nucleation rates is weaker than that
having a supersaturation ratio of 10.52 at 248.45 K. which is predicted.
There are many possible shortcomings in the classical
theory of homogeneous nucleation, and the motivation to
librium distribution of embryos is a mathematical artifice. find a more suitable approach is clear. One such defect is the
The balanced steady state is nonphysical for a supersaturatethission of the transient period. By assuming this time to be
vapor because a supersaturated vapor is not in complete thénsignificant, and thereby immediately placing the embryos
modynamic equilibrium and, therefore, produces a nonzerinto their steady-state distribution, one cannot obtain time-
current. dependent expressions for either the cluster concentrations or
Simple kinetic arguments are employed by the classicathe currents between them. Using a nonclassical semiphe-
theory to obtain a time-independent rate of the number ofiomenological approach, Laaksonetnal 1 developed a re-
monomers condensing onto a motionless embryo. This condsed version of the steady-state nucleation rate theory of
densation rate is combined with the constrained equilibriunDillmann and Meiel that agrees with experimental data for
distribution to derive the rate at which molecules evaporatenany different substances over a wide range of temperatures.
from a given cluster. The classical theory then applies thé\s with the classical theory, however, they have not pro-
condensation and evaporation rates to derive the sizetuced an expression that includes the time dependence of the
dependent currents, each of which is the net number of emndividual cluster concentrations. The utility of considering
bryos becoming one molecule larger in a given time andhis time evolution has been demonstrated by Abrafiamd
volume. These currents represent the total flow of embryo®Vilcox and Bauet.’ Abraham found that during the transient
between concentrations of molecular clusters. period, the currents between concentrations of embryos
At this point in the classical theory two crucial assump-smaller than the critical size were at times much larger than
tions are made. The first assumption is that a steady-stathe steady-state current; these currents significantly changed
period exists during nucleation in which the concentrationdn magnitude even when the corresponding concentrations
of equally sized embryos remain constant. Consequently, theere almost steady. Neither he nor Wilcox and Bauer ob-
currents between the embryo concentrations must all havined time-dependent expressions, however, but generated
equal magnitudes; a concentration of clusters could not béme evolution plots by numerically integrating the necessary
constant if the rate of embryos flowing “in” were not equal growth-rate differential equations.
to the rate flowing “out.” The distribution of cluster concen- In this paper, it is our goal to present a time-dependent
trations during the steady-state period is called the steadyexpression for cluster concentrations within the context of
state distribution. Since the currents all have the same madromogeneous nucleation. The theoretical derivation is gen-
nitude, they lose their size dependence and are consideredecal and may be applied to different substances. We incorpo-
be the steady-state current. This steady-state current is takeste the kinetic theory of dilute vapors to obtain a condensa-
to be the nucleation rate. The second assumption is that then rate that assumes all of the embryos are in motion; this
time it takes for the embryo concentrations to initially grow is in contrast to the standard technique of assuming that only
and form the steady-state distribution is negligible whenthe monomers move. The Laaksoredral. reparametrization
compared to the steady-state period; this initial period ofof the Dillmann and Meier homogeneous nucleation theory
time is called the transient period. Thus, the entire homogeis then employed to derive the evaporation rate. Using the
neous nucleation process is modeled with only the steadyconservation of mass, we correct the standard monomer con-
state period in consideration. centration growth-rate equation, which can be shown to be
Removing the time dependence of the cluster concentraerroneous. Finally, the entire system of cluster concentration
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212 T. Olson and P. Hamill: Kinetics of homogeneous nucleation

growth-rate equations is solved using matrix methods. An x-mer gains and loses molecules by condensation
The advantages of this time-dependent approach arand evaporation. The rates at which molecules condense onto
many. This model allows us to calculate the time-dependerdand evaporate off of aw-mer in a given time interval are
behavior of embryos for almost any homogeneous nucleatiodenotedc, ande, , respectively.
theory; an expression for the change in Gibbs free energy is We use four fundamental assumptions to obtain a nu-
all that is required. We are able to predict how many em-merical expression foc, . First, we assume that at-mers
bryos of a particular size are present at a given time for anyre spherical; this approximation naturally loses accuracy as
supersaturation ratio and temperature. It then becomes cletire embryos get smaller. Second, we attribute the density of
how the thermodynamic system approaches the steady-statee liquid phasep, to each of thex-mers. These two assump-
from its transient period of growth. Furthermore, the time-tions can be summarized by the equation
dependent expressions allow us to determine the relative ac-
curacy of the steady-state approximation, and to calculate

when each individual embryo number concentration slows itgyherem, represents the mass of one molecule mptepre-

growth enough to be considered steady. The predicted nucl@ants the radius of the-mer. The third and fourth assump-

ation currents are in excellent agreement with experimentglgns are that the number of monomers per unit volume,

data and the results predicted by Laaksoseal."* and the temperature of the vapdr, are constant during the
nucleation period. Of course, the monomer concentration
must be depleted for molecular clustering to take place, but

Il. DERIVING THE RATES OF CONDENSATION AND we assume that this depletion is insignificant.

EVAPORATION We obtain the condensation rate by evaluating the rate of
molecular collisions using the kinetic theory of dilute vapors.

We begin our analysis of the nucleation of droplets byThis approach is advantageous because all embryos are con-

restricting the ways which a molecular cluster may increasgjdered to be in motion(The classical treatment of conden-

or decrease in size. During nucleation the number of monosation assumes that the embryos are suspended at rest in the

mers in the supersaturated vapor is significantly larger thagapor, with the monomers being the only moving bodies.

the total number of cluster@limers, trimers, etg. It is rea- e treat the vapor as a gas mixture, each gas containing all

sonable then to assume that the only way a cluster becomes the embryos which have the same number of molecules. If

larger or smaller is by gaining or losing single molecules. Lety collision between a monomer and ammer occurs, the

x be a discrete variable representing the number of moleculegistance between the centers of the twg, must be
in an embryo. An embryo consisting 8fmolecules(an “x-

3 T p=MyX, &)

mer”) is denotedA, . It increases its size by gaining a single M1 =TIyt ry. @

moleculeA,, Using Eq.(3),
ActAI— A, @ 3myx| Y% (3my |8 (3my|1R 134 q 5
"\ amp | T\amp) Tlamp CErD.

and decreases its size by losing a molecule,

Envision a shell with radiug,; surrounding thex-mer.
Whenever the center of a monomer intersects this shell, the
Of course, it is possible for ar-mer to absorb a dimer x-mer and monomer collide. The cross-sectional area of the

trimer, or any other embryo; the frequency of such an event?he” is the total collision cross section and is denoted by
however, is negligible compared to monomer absorption. As@x1, Where

suming that only binary collisions take place is essentially
the same as assuming that the supersaturated vapor is dilute.
(Even for a supersaturation of 10.52 and a temperature dEonsider arx-mer moving with velocityr, through a vapor
248.45 K, which corresponds to a nucleation rate of 1000f randomly moving monomers. Given the monomer number
million droplets/cc/se¢® the maximum cluster diameter is density at timet, n,(t), a small numberAn,(t) will have

only 6.5% of the mean molecular spacing of monomersvelocities within the intervalv,»+Aw]. We choose a refer-
within the vapon. Reactions(1) and (2) are starting points ence frame in which these monomers are at rest and the
for many theoretical approaches to homogeneous nucleatior:mer has the relative velocity, , where

It has been suggested that the formation of dimers involves

three molecules, as opposed to tifiahe involvement of the Vi =W P )

third molecule is a consequence of the conservation of en- . . . . .
ergy and momentum. This use of an additional reactalrwln time At, thgx-mer, m°"'”9 with velocnyurxl and havmg
might also be necessary for slightly larger clustérspw- the total collision cross sectiam,;, sweeps out a c_yllnde_r of
ever, it is most likely to be a neutral component, such as ¥°/UMe axiv; At. The chance that ar-mer moving with
carrier gas molecule. For the sake of simplicity, we will velocity v, collides with a monomer having a velocity in the
maintain the assumption that clusters grow and shrink onlyange[v,»+Av] is Any(t) ax, v, At. This corresponds to a
by gaining and losing monomers. collision frequency off (t),

AX—>AX*1+A1' (2)

=l (6)
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T. Olson and P. Hamill: Kinetics of homogeneous nucleation 213

fy(t)=An1(t)f1x1VrX1- (8) ecules in any velocity class is time independent, so during
the steady-state period, when fluctuations of the embryo con-
The total collision frequency, which is the mean rate of col-centrations are small, the vapor is at a quasiequilibrium. In
lisions between th&-mer and the monomers, is obtained by fact, we have a|ready assumed a quasiequ”ibrium by assign-
summingf (t) over all of the possible monomer speeds:  ing a single temperature to the vapor.
In the spirit of Katz and Wiedersiclf, we derive the
fxl(t)=2 f (1) evaporation rate, by considering the equilibrium number
Y density ofx-mers,ng, in a saturatedvapor. This approach
differs from the classical theory, which invokesapersatu-

=2 Any(Dagy, rated vapor constrained to be in equilibrium.
! The equilibrium concentration foe-mers is usually writ-
Any(t) ten in the form
=M@ -5 v (9)
v 1 E_E _AGX 18
Note thatAn,(t)/n,(t) is the fraction of monomers having a Mx =N &P =77 (18)

velocity in the rang¢w,v+Avw], so the summation in the last

term of Eq.(9) is equal to the mean value mfxl' Thus, whereAG, is the change in the Gibbs free energy of forma-

tion of anx-mer. The net flow of embryos per unit time per
() =na(t) axi(v ). (100 unit volume from thex-mer concentrationn,(t), to the

, +1)-mer concentratiom,, 4(t), is defined as the nucleation
One of our fundamental assumptions was that the numbet, rant | 1)
1t X )

density of monomers was time independent,
ny(t)~ny(0). (13)

This assumption removes the time dependence from the tot
collision frequency, hence

Ix(t)Eanx(t)_ex+1nx+1(t)- (19)

tjomogeneous nucleation cannot occur in a saturated vapor,
which is in equilibrium with a plane surface of the liquid
phase; this means essentially that the critically sized cluster
fra=n1(0) axi(vy ). (12 within a saturated vapor must be infinitely large. Hence, the
number densities ok-mers are time independent and the
a}%ucleation currents between the concentrations of embryos
are equal to zero. Using E(L9),

From basic kinetic theory for a hard-sphere molecule gas
equilibrium2°

8kT) v

— (13 0=c> Pnf-e ik, , (20)
i

(V)= (

wherem. is the reduced mass wherec{(>=1) corresponds to the condensation rate of a satu-
r )

rated vapor. The evaporation rate is then simply expressed as
mym,  mg(xmy)  Xmy

m,= = = : (14 nt_
Tomptme mgtxmg 14X e,=cSY :]_El (21)
Using Egs.(5), (6), (12), (13), and(14), we obtain a useful X
expression of the total collision frequency, Using Eq.(18),
x+1)42 AG,—AG
— 1/3 2 — -1
le_ Bnl(o)(x + 1) X ) ’ (15) ey= CS(S, 11) eX% %) . (22)
where It remains to obtain formulas for the Gibbs free energy
3m,; |3/ 87kT\? terms in Eq.(22). There have been many theoretical ap-
= m m, ) . (16) proaches to determining the Gibbs free energy of a homoge-

neously nucleating embryd, however, an expression that
Let us define the sticking coefficiet, as the probability works for all substances under all possible conditions has not
that a monomer hitting ar-mer sticks to it. The product of yet been found. We choose to use an approach developed by
¢y andf,, yield a rate at which monomers hit and stick to anfFord et al?? and Laaksonemt alX* in which the Dillmann

x-mer; this is the condensation ratg, and Meier theory is revised; this method agrees with experi-
+1\12 mental data fon-nonane, water, and the lower alcohols. In
Cy= P BN1(0)(x3+1)2 —) (17)  brief, we will derive the Fordet al. expression for steady-
X state cluster populations, impose a condition posed by Laak-
We will assume thatp, is equal to unity, so all molecules sonenet al, and apply this modified expression to a satu-
that collide with an embryo stick to it. rated vapor. The result will be combined with a condensation
One might be opposed to treating the supersaturated vaate in order to obtain the evaporation rate.
por as being at equilibrium in the derivation of E@.3). We begin by using an expression for the equilibrium

When a vapor is in an equilibrium state the number of mol-population of clusters within a supersaturated vapor,
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214 T. Olson and P. Hamill: Kinetics of homogeneous nucleation

Ap Compare terms to obtain the valueskof andK,:**
NE=exg —K,0x?°— 7 In x+In(geV) +x — (23
kT -1 Po Bp..
_ i - 1=—|In + (32
The functionK, describes the surface energy deviations of 0 ok T KT
an x-mer from the surface energy of a macroscopic liquid,pq
droplet; 7 and q, are parameters related to the configura-
. . . . -1 —Bp- Bp.
tional effects of the embryo as well as its rotational, vibra-  K,= —mIn ——— 2" exg —K, 0+ —— (33
tional, and translational degrees of freedom; the térms 6277 kT kT
given by K, is expanded in powers of ® (which corresponds to
6my ()2 23 1hry)
T KT (T ' (24 Ky=1+a;x Y3+ax 23 (34

in which o is the surface tension of a macroscopic liquid wherea, anda, are determined by E¢34) for x equal to 1
droplet at temperatur&, V is the volume occupied by the and 2,
vapor, andAu is the difference between the chemical poten- (Kp,—K 223 +2728_1

tials of a supersaturated and saturated vapor. Assuming that a,= >=TA=5=713 , (35)
the partial pressure of the monomers is approximately equal N
to the total vapor pressure, we can express this difference iand
chemical potentials &%
P a,=K,—1—a,. (36)

Au~KT In(S)+B(p—p.)+0O(S?), (25)

where the last term denotes truncation error &ds the _
second virial coefficient from the virial equation of state, in KZ_K1272/3:

Note thata, is independent of the quantity,, since

—Bp Bp.
R

the form 9223 KT T
igliNiE=kT+]Z1 ijJ—l_ (26) %W’éln ?2)_ 37)

This q, independence was first noted by Fartial?? Ne-
glecting the second virial coefficient term in EG7), as it is
numerically insignificanfEqg. (30)], we obtain Fordet al’s
NE =g exp( — K, 0xZ3— 7 In x+1In(qoV) expression for the equilibrium population xfmers,

NE=NE exp{— 6[x?*+a;x*—(a;+1)]

Using Egs.(23) and (25), we obtain an expression for the
equilibrium cluster populations,

iy B(p—px))_

KT (27) —7Inx+(x—1)In S}. (38)
Laaksoneret al* consideredr in Eq. (38) to be a theo-

retical free parameter, removing its original depend&hoe

experimentally measurable values; they determined that set-

ting 7 equal to zero produced the best fit with nucleation data

In order to obtain an expression f&, , the surface energy
modification, we will use a truncated form of the virial equa-
tion of state,

pVv ~KT+B 28 for n-nonane, water, and the lower alcohols. Thus we arrive
NE+ ZNE - P- (28) at their expression for the change in @mer’s Gibbs free
. . energy by considering Eq18),
This may be rewritten as
. bV DY o EE AGH =kTO[x**+a;x*~(a;+1)]—kT(x—1)In S.
+Bp~ ~—[1- .
p NE[ 1+ 2(NGIND) ] NE [ (N2/N7)] (39
(29 We now obtain the evaporation rate by combining Egs.

(39) and(22) with the saturation ratio equal to one,

e,=c >3 exp{ 6] x¥3—(x—1)%3

Substituting Eq(27) into Eg. (29), and using the fact that

Bp
kTt (30 +apdB-ay(x— 1)1}, (40)
we reexpress the virial equation of state as where, using Eq(17),
Pe Bp. Bp (5=1)_ (s=1) 13 vz
kT+Bp~a eXp( Kb+ 5|1 37~S Cor =gy 18N (0 ][(x—1)Y+17? =1
5 (4)
xexp{ O(Ki— kF')I' ” Equations(41) and (17) require formulas for the initial

monomer concentrations of a saturated and supersaturated
(31)  vapor; these can be obtained using EgS) and (32),
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T. Olson and P. Hamill: Kinetics of homogeneous nucleation 215

p Bp a maximum finite value for the cluster size A common
n(0)=i5 (1+ ﬁ) (42)  technique is to choose some sif, that is about twice the
critical size; clusters having this many molecules are as-
Note thatex iS independent Of the Supersaturation I’atiO Of thesumed to S|mp|y keep growing, assuming a neg||g|b|e chance
nucleating vapor, but is sensitive to the embryo size, vapofo shrink from evaporation. Some treatments effectively re-
temperature, and surface tensi@ee also Eq(24) for sur-  move theG-mers from the system by invoking the Szilard
face tension and temperature terms withline, is also un-  poundary condition, in which th&-mer population is set to
defined forx=1, as it should be, since a monomer cannotzero, decomposed into separate molecules, and then inserted
evaporate. back into the monomer populatidn.
The relationship o, ande, to the Gibbs free energy is Another approach is to defir@ as an absorbing staté,
shown in Flg 1. Note that the condensation and evaporatiorh which case embryos are not allowed to leave M&ét)
rates are equal when the free energy curve reaches its maXipncentration once they have entered it,
mum; the cluster size at which this occurs is denoted the
critical size x¢ . Forx-mers smaller than the critical size, the cc=es=0. (44)
slope of the Gibbs free energy curve is positive; accordinglyBy settingcg equal to zero, the absorption condition termi-
the evaporation rate dominates over the condensation ratgates the forward coupling of the growth-rate equations, giv-
On the other hand, for-mers larger than the critical size, the jng them an upper bound,
slope of the Gibbs free energy curve is negative and the
condensation rate dominates over the evaporation rate. This - _
behavior is in agreement with the fact that thermodynamic ~ dt Ne(t)=Coe-1Me-a(1). 49
systems tend to spontaneously assume the lowest possibige ahsorbing state is assumed to be so large that its em-
state of Gibbs free energy. Embryos smaller than the critic%ryos will just keep growing, thusg is set equal to zero.
size tend to shrink by evaporation while those larger than theis method differs from the Szilard method because the
critical size tend to grow by condensation. G-mers remain in the system, they are not removed. Note
that both methods treat thg,_g(t) populations in the same

I1l. DISCUSSION OF THE EMBRYO GROWTH-RATE manner. The growth_rate equation fﬂé,l(t) has no con-
MONOMERS

Having deduced the mechanisms by which a cluster in- E Ng_1(t)=Cg_oNg_2(t)—(Cg_1teg_1)Ng_1(1).
creases and decreases in size, we can derive the growth-rate (46)
equation for the concentration sfmers at timet, n,(t). An
x-mer is created when either ar-1)-mer grows by con- In this study we decided to use the absorbing state

densation or when anxf+ 1)-mer shrinks by evaporation. method for two reasons. First, by not setting the number of
However, anx-mer is destroyed when it grows by conden- G-mers to zero, we can check that our model is conserving

sation or shrinks by evaporation. Hence, mass by confirming that the total number of molecules re-
q mains constant. Secondly, the absorbing state method is ad-
5 N(t)=Co_ 1N 1() = (Cete)n,(t) vantageou; becausg it allows us to determine approximately
t when the firstG-mer is formed.
Fegs N q(t) for x=2, (433 The formation of the firsG-mer is important because it

occurs at the maximum time for which the growth rate equa-
where the first and third terms on the right represent theions are completely accurate. As long as there are no
inflow of clusters entering,(t) (x-mer creation while the  G-mers, Eq(46) is physically realistic. However, as soon as
second term on the right represents the outflawner de-  the first cluster occupies the absorbing state there is a chance
struction). Note that this is a simple inflow-outflow ordinary that it will lose a molecule by evaporation. This probability
differential equation for the time rate of change of each emis smaller than the chance of growth by condensation, but it
bryo concentratioridimers, trimers, etg. It is convenient to  should not be neglected, regardless of the absorption condi-
reexpress this growth-rate equation using the definition ofion, Eq. (44). In fact, the difference betwees, andc, is

the nucleation current, E¢19), usually much larger than that betweeg andeg (if they are
d not set to zerp yet we do not consider, negligible because
at N (t)=1,_41(t) =1 (t) for x=2. (43  embryos would be unable to grow beyond the dimer state

(see Fig. 1 Therefore, once the absorbing state is first popu-

The entire nucleating systefaxcept the monomergan lated, Eq.(46) loses accuracy since it lacks the evaporation
be represented by a set of coupled differential equations inontribution tong_4(t) from the G-mers. Consequently, the
the form of Egs.(43a or (43b). This set has a lower bound, calculated growth rate fong_;(t) is smaller than its true
the dimer concentration,(t); the growth rate equation for value. This causes the calculated value of tle-(1)-mer
the monomer concentration will be addressed later. Becausmncentration to also be smaller, and the error propagates to
of the forward coupling in Eq(43a, we cannot mathemati- all of the embryo concentrations through the backwards cou-
cally solve the coupled set unless it has an upper bound, i.epling of the growth-rate equatiori¢33. It has been shown,
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216 T. Olson and P. Hamill: Kinetics of homogeneous nucleation

A\

The time rate of change of the monomer concentration can

ny(t) be derived in a more quantitative manner by considering the
> conservation of mass. L& be defined as the total number
i l CZ“Z(t)l C3“3(t)i of molecules in the closed nucleating system,
¢ ny(t) Comylt) Cang(t)
n® | [ndd) | = |ndt) | < | ndt)] 27 o
exny() ean() eind®) Q=V2, ini(v), (49)
e, nyt) l e3n3(t)l/ E4n4(t)l/
whereV is the volume occupied by the system. Since the
> system is closed, the total number of molecul@s,is con-
i > stant:

FIG. 2. The growth rate of the monomer concentration is affected by the G d
growth and decay of all the embryo concentrations. For example, when — QZOZVE i — ni(t). (50)
c,n,(t) dimers become trimersy, (t) losesc,n,(t) monomers. dt i= dt

We can solve this expression for the monomer growth rate,

however, that the nucleation rate is only slightly affected by
the value chosen fofs;’ therefore the inaccuracy in the d c - d
growth-rate equations is small, and we will use the absorp- ¢ ny(t)= _i:EZ T ni(t), (51)
tion condition, Eq.(44), regardless of the slight error. Note
that the Szilard boundary condition also introduces this inac-
curacy by settingig(t) to zero. and then use E¢43D),

One might be tempted to keep equal to its calculated
value, instead of setting it to zero, in oro!er to maintain the ot Ny(t)=—2[15(t)—15(t)]—3[12(t) = 15(t)]
accuracy of theng_4(t) concentration. This, however, pro-
duces significant errors into the model, resulting in negative —A[15() =1 4()] = =l g_1(1). (52)
currents which deter the concentrations from their steady
state. In other words, the unrealistically lai@emer concen-
tration causeggng(t) to dominatecs_;hg_4(t), and thus
ls—1(t)<0. From Eq.(28) we see that this causes,_;(t)

Combining terms, we obtain E¢48b).

The correction to the monomer growth rate equation is
. ignificant for two reasons. First, because of the coupling in
to grow, and the inaccuracy propagates to the other embryt ge growth-rate equatior83a, all of the embryo conceﬁtrag

concentrations. tions depend on the monomer concentration; an error like
We mentioned earlier that the growth-rate equations P '

. __that suggested by E@4739 is propagated to all of the em-
(433 and(43b) do not apply to the monomer concentration, bryos. Secondly, as the steady-state is approached, the cur-

rents between concentrations approach the same magnitude;

gt Mt #€2ny(t) —Cany (1) (473 the correct monomer growth-rate equatigt8b) will then
have a depletion of monomers thaGstimes as great as that
and predicted by Eq(47b) if it were an equality.
d

IV. A TIME-DEPENDENT SOLUTION
If a cluster can only change size by gaining or losing singleTO THE GROWTH-RATE EQUATIONS
molecules, then the time rate of change of the monomer con-

centration must depend on the concentrations of all the clus- | "€ Set of coupled differential equations describing the
ter sizes; if there are,n,(t) dimers becoming trimers every nucléating system, Eq&484 and(43a), can be solved using
second, then there are alsgn,(t) monomers depleted per matrix methods. We first define a column matrix in which the

second. This is best illustrated by Fig. 2, which indicates tha¥th row element is the concentration wimers,n,(t),

G-1

d n,(t)
Gt MO =enz(—cany(D+ 2 e aniea(0—cim(v), n(t)
(489 n(t)= : (53
or, using Eq.(19), na(t)
d G-1 . . ) . )
— ny(t)=—1,(t)— E (). (48b) AGXG r_natnx is built which contains the condensation and
dt i=1 evaporation rates,
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—2C; 2e,—C, e;—Cj €c-1—Cg-1 0
o —(cote,) €3 0 0
0 C, —(c3tey) 0
M= 0 0 C3 0 N (54)
0 0 0 €c_1 0
: : : —(Cg_1t+eg_1) O
0 0 0 Co_1 0

This matrix, which we shall call the growth-rate matrix, is singular since the last column only contains zeros. Consider the time
derivative of the matrix(t),

d
gt ny(t) G-1
d €Nn(t) —Cany(t) + iZl € +1Ni+1(t) —cini(t)
d — ny(t -
gino=| @2V =l e coren ey |- 55
d Co_ n‘ _q(t
ane(t) c-1NG-1(t)
|
The right-hand side comes from Eq48a and (439. But In the derivation of the condensation rates for the em-

clearly, the right-hand side of E¢G5) is justM -n(t), so we  bryos, the number of monomers was assumed to remain es-
thereby reduce the set of coupled differential equations teentially constant. However, if anything is to nucleate, mono-
one matrix differential equation representing the entire sysmers must be depleted; the monomer growth-rate equation
tem, (483 describes the mechanism for this to occur. Further-
d more, monomer depletion causes a decrease in the vapor
—n(t)=M-n(t). (56)  pressure; this lowers the supersaturation ratio, and conse-
dt quently lowers the nucleation rate. Therefore, we must
In order to obtain the particular solution, we invoke the ini- choose a maximum time for the model that is large enough
tial condition that att=0, the vapor is composed of only for the embryo concentrations to fully grow, but small

monomers. The concentration of monomers is given by qunough that the final concentration of monomers is still ap-
(42), so proximately equal to the initial concentration, such that the

nucleation current is not drastically affected. Miller al1?

P 1+ @ used experimental data to derive an empirical nucleation rate
kT kT formula which is a function of only the vapor temperature
n(0)= 0 , (570  and supersaturation ratio. We have used this formula to cal-
: culate the percentage decrease in the nucleation current if,
0 for a given temperature, the supersaturation ratio decreases

) by 2%; Fig. 3 shows that for supersaturation ratios from 4 to
wherep is the pressure of the supersaturated vapor. The paky the current decreases 5070 %, depending on the tem-
ticular solution of Eq.(56) with initial condition (57) is the  yoratre. Since we assumed that the partial pressure from the
exponential of the growth-rate matris], times the initial  m,nomer concentration remained approximately equal to the
condition column matrix, total vapor pressurg, ny(t) is approximately proportional to

n(t)=exp(Mt)-n(0), (58  the supersaturation rati§; using Eq.(42) we obtain this
. L proportionality,
where the matrix exponential is givenBy
Bp..S

s (MY p-. p.
quMt):;o (,\f—f) (59 nl(t)wnl(O):W (l-i-?

~ T S. (60)

With Eq. (58) we have accomplished our goal of obtain- Hence, if the monomer concentration decreases by 2%, the
ing an expression for the time-dependent distribution of eaclsupersaturation ratio decreases by 2%, and the nucleation
cluster concentration,(t). Since computing the exponential rate decreases by 50—70 %. Although such a decrease in the
of a matrix is a well studied probleA?;?® the solution(58) current appears significant, it is of the same order of magni-
can be calculated. We must now determine the maximuntude. Since nucleation rates vary over many orders of mag-
time for which the solution is valid, which we shall cajl . nitude for small changes in vapor pressure and temperature, a
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FIG. 3. The effects of a 2% decrease in the supersaturation ratio are showRIG. 5. The distribution of embryo concentrations for water vapor having a
Depending on the temperature and initial supersaturation ratio of the watesupersaturation ratio of 10.52 at 248.45 K evaluated at different times.
vapor, the nucleation rate decreases approximately 50—70 %.

change of less than 1 order of magnitude is acceptable. We'yo concentrations seem to approach the steady state se-
therefore chooser, the final time for which our model is quentially. Within 1 ns, the number densities of the smallest
valid, to be the time when the monomer concentration ha§lusters have stopped growing significantly. As time
decreased by 2% of its original value; thus, progresses, successive concentrations appear to reach the
steady state, and finally the concentrations with the largest
Na(te) =0.98,(0). (62) embryos also appear to stop growing. In both cases it seems
Of course, the possibility exists that the effect of coagulatiorthat the steady state is reached sometime between one hun-
and embryo—embryo interactions could become greater thastred nanoseconds and a microsecond; this marks the end of
or equal to that of the reactions in Eq4) and (2). Our the transient period. We can evaluate the end of the transient
theory alone could not be applied in such an instance. Howperiod more precisely by using Figs. 6 and 7, which show the
ever, it is beyond the scope of this paper to determine whetime evolution of embryo concentrations of particular sizes.
coagulation processes become dominant, so we will assumihe sequential approach to the steady state is also seen in
that tg is short enough that Eq$l) and (2) are the only these figures, more importantly, however, is the fact that the
significant reactions. largest clusters require a microsecond before they appear
Figures 4 and 5 show distributions of embryo concentra-
tions calculated from Eq58) at particular times. The em-

=y

8«-

25

Number Density of Clusters (1/cc)

3
T
N

Number Density of Clusters (1/cc)

1e-06 10 0.01 sec

100 nsec

10
10 nsec Time (sec)

10 L I L L L L

30 40 50 60 70 80 90 100 . . . . .
Molecules per Cluster at S = 7.22 and T = 259.07 K FIG. 6. The time-evolution of specific embryo concentrations is shown for

water vapor having a supersaturation ratio of 7.22 at 259.07 K. In descend-
FIG. 4. The distribution of embryo concentrations for water vapor having aing order from the top of the plot, we see the monomers, 12-mers, 25-mers,
supersaturation ratio of 7.22 at 259.07 K evaluated at different times. 49-mers(the critical size, 74-mers, and 99-mers.

10
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detail later. Because the eigenvalues are distinct, the eigen-
vectors are linearly independent, which allows us to con-
1 ] clude thatVv diagonalizedM. This allows to writeM as

V'IiM.V=L=M=V-L-V"L (64)

3,
T

The diagonalization oM allows us to use Eq59) to ex-
press the matrix exponential @f1t) in terms ofL andV,

©n
T

Number Density of Clusters (1/cc)

Z (M)l
exr(Mt)=E ¥
107 18 JZO
ES * V-L-V 1 Jtl *©
. E ; [ (_ -1 (65)
L 70 ] =0 i=0 J
. s /] ' . . ‘ thus
1 i expMt)=V-exp(Lt)-V "1 (66)

FIG. 7. The time evolution of specific embryo concentrations is shown for| at ys define &G X G dlagonal matrix| E“ as follows
water vapor having a supersaturation ratio of 10.52 at 248.45 K. In descend-

ing order from the top of the plot, we see the monomers, 9-mers, 18-mers, EMY). . =5 exp\:t ii 1.2 6
35-mers(the critical size, 53-mers, and 70-mers. (B J 1 AN ) jed G} (67)
Since L is a diagonal matrix, its matrix exponential is

~ equivalent to taking the exponential of the diagonal ele-
steady. Hence, for the two systems modeled, the transieptents, thus,

period lasts about a microsecond.
exp(Lt)=EM, (69)

V. REEXPRESSING THE SOLUTION USING We can now use Eq966) and (68) to rewrite the time-

EIGENVALUE ANALYSIS dependent number density solution, E8g), in terms of the
Although Eq.(58) is an exact solution to the embryo eigenvectors and eigenvalues of the growth-rate matrix,

growth-rate equations, we cannot predict the physical behav-  nt)=v.EM.v~1.n(0). (69

ior of a particular embryo concentration by simple inspec-

tion; the matrix exponential must be numerically computed |t is convenient to express this matrix equation in terms of its

However, we can reexpress this equation using the eigenvaglements,

ues and eigenvectors of the growth-rate matrix. Eigenvalu ()]

analysis illuminates how the embryos approach the steady- x1

state from the transient period, and it allows us to estimate G 6 G

the accuracy of a steady-state approximation. =22 2 (Vi(BM) (V- 1)1 (e
The horizontal lines in Figs. 6 and 7 are deceptive, be- o

cause they suggest that the embryo concentrations stop G G p

changing. This is not the case; the approach to the steady- =2, >, (V)xil 8 expNt)1(V™h; 1 1T

state is asymptotic, and the concentrations never completely b

lose their time dependence. In order to prove this, we must G D

use some auxiliary matrices to reexpress the time depen- =E (Mx.i exp()\it)(vl)iylﬁ(

dence of the solution(t), Eqg. (58). Define aG X G diagonal :

matrix L to contain the eigenvalues, , of the growth-rate

Bp
1+ﬁ

/N We now have an expression for the single concentration of

matrix M, clusters withx molecules at time:
(L) =\, i,je{l,2,...G}, (62 p Bp G
and define anothds X G matrix V, the columns of which are Ny(t) = 1+ KT/, E (V)xi(V™hi 1 exp( =[N,
the corresponding eigenvectors, (70)
M-V=V.L. (63)

wherex=1,2,3...,G and O<t<ty. The exponential term is

In our calculations, we have observed three properties ofewritten as a reminder that the eigenvalues are negative.
these eigenvalues. First, the eigenvalues are distinct and real. The steady-state behavior of the embryo concentrations
Secondly, one has the value zdminceM is singulajy and  in Figs. 4, 5, 6, and 7 result from the relative magnitudes of
the rest are negative. Thirdly, one of these negative eigenvathe eigenvalueg; in Eqg. (70). As mentioned earlier, one of
ues is always significantly smaller in magnitude, i.e., “lessthese is equal to zero and the rest are negative. We choose to
negative,” than the others. This will be discussed in greatetabel the zero eigenvalue; . Additionally, we noted that one
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FIG. 8. The absolute values of the subdominant eigenvélieand the
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p

Bp 1
nx(t)%ﬁ(l"_ﬁ (V)xp(V™ Hp 1 exp—|Aplt),

(74)

wherex=1,2,...G—1 andt, p<t<tg. We see in Fig. 8
that the dominant eigenvalue rapidly approaches zero as the
supersaturation ratio decreases. Thus we can approxipate

to be zero, and the approximation becomes better as the su-
persaturation ratio decreases. This removes the time depen-
dence from Eq(74),

p Bp
kT ( T
wheren, represents the steady-state concentrationmkers,
with x=1,2,...G—1 andt, p<t<t. Equation(75) is valid
only if

eX[I—|)\D|t)~1, tgtp

nx(t)%nx (V)x,D(V_l)D,la (75

(76)

dominant eigenvaludine) are shown for a supersaturated water vapor at W€ call this the steady-state condition; if it is satisfied, then

293.15 K; the subdominant eigenvalue is the least negative of;tiyeoup

after timet, , the embryo concentrations will essentially

in Eq. (71). We note that there is a large difference in magnitude between thggse their time dependence. The closer @) is to equality,

two, and that the dominant eigenvalue approaches zero as the supersat
tion ratio decreaseqThe scale for\p is on the right and the scale for

min(|\;|) is on the left)

of the negative values was much closer to zero than the rest; p

it will be referred to as the dominant eigenvalag,. These

relationships are summarized as follows,

Figure 8 illustrates this relationship by comparixg to the
least negative eigenvalue of the group.

Yfe more accurate a steady-state approximation will be. Us-

ing Eq. (75), we rewrite thex-mer concentration Eq70) by
pulling the Dth term out of the sum and setting, equal to
zero,

G-1

El (V)i V™1 exp(— N0,
(77)

Bp

1+ﬁ

nx(t)% Ny+ k_T

i#D

wherex=1,2,...G—1 and Ost<t.
Equation(77) is the final result of our eigenvalue analy-
sis; its form (which consists of a time-independent steady-

The relation of the dominant eigenvalue to the steadystate term added to a time-dependent transient)tetiows
state can be best understood by considering the time evolws to determine the general physical behavior of the embryos

tion of the cluster concentratiomg(t), as described by Eq.

by simple inspection. Given the form of E((7), it is clear

(70). Because of the relative magnitudes of the eigenvalueghat anx-mer concentration approaches the steady state as-

Eq. (71), there may come a time, denoted fy, , when the
\; terms in Eq.(70) become negligible compared to thg
term; note that the possibility exists fog, to be greater

ymptotically during the nucleation process. Furthermore,
knowing that the time-dependent transient portion becomes
negligible fort=t, , we can deduce tha} j, is the duration

thantg, the maximum time for which our model is valid. of the transient period for the-mers. Finally, by evaluating
Furthermore, it could have different values for different clus-the steady-state condition, E.6), for a particular growth-

ter sizes, which is the reason for tResubscript. Ift=t, 5,
Eq. (70) will become simpler in form,

Bp
1+ ﬁ

()~ [(Vxo(V Yas

+(V)xo(V Y1 exp(—[Np|D)], (72

wheret, p<t<tg. Recalling the structure of the growth-rate
matrix, Eq.(54), and noting thak s is the zero eigenvalue, it

is easy to show that the eigenvector corresponding o

rate matrix, we can determine the relative accuracy of a
steady-state approximation. McDonald suggested that evalu-
ating the steady-state nucleation current is analogous to find-
ing the steady-state heat flux through a slab which has a
constant known temperature at each fadequation (77),
having the same form as the heat-flux solution, supports his
claim.

VI. COMPARISONS BETWEEN THEORY
AND EXPERIMENT

must have zeros for all elements except the last, which must

be nonzero,

(M)x<6,6=0, (V)g,c#0. (73

Equations(58) and (70) are exact and equivalent solu-
tions for the growth-rate equationg3a and (48g. For
physically realistic problems the growth-rate matrix is large,

The G-mers only absorb embryos; this results in a nonphysie.g., 10100 for water vapor with a supersaturation ratio

cal behavior of growth. Therefore we ignore tBemers, and
rewrite Eq.(72),

equal to 7.22 at 259.07 K. Obtaining all of the eigenvalues
and eigenvectors is certainly possible, but it is nontrivial.
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FIG. 11. The nucleation current at the critical size is divided by the steady-
) N state current, and the time evolution of this ratio is sh@salid line). The
FIG. 9. We compare the embryo concentration steady-state distributions qfagheq Jine marks the ratio's value at 0.632. The time lag is then approxi-
this work (Im?)’ Abrghafm(Jr), and Gillespie(O) for water vapor having a 5164 as the moment when the solid and dashed lines intersect. The system
Stpersaturation ratio of 7.22 at 259.07 K. considered is water vapor having a supersaturation ratio of 4.91 at 263.2 K.

Furthermore, as the size of eigenvector matfilncreases, it
becomes ill-conditioned and approaches singularity; thi
complicates the calculation &f 1. Sometimes the addition

Gillespie?* Abraham’s approach follows that of the classical
SEheory, in which the classical free energy, the Szilard bound-
ary condition, and the constrained equilibrium Boltzmann

of terms in Eq.(70) introduces significant round-off prob- .7 - . . . .
] . distribution are employed. He obtained figures similar to 6
lems. Therefore, although E¢r0) is theoretically advanta- X : . . 2 .
and 7 by using a nonlinear integration routine to numerically

geous for deducing embryo concentration behavior, there are SO i
. : solve the growth-rate equations; it is interesting to note that
many chances for numerical error to ruin the results. W

have found that using Ed58), which involves calculating et._q' (58) anq the model of Abraham pr(_edlct the same general
. T : time evolution for the embryos. He did not obtain a closed
the exponential of the growth-rate matrix, is numerically

more reliable and consistent; thus, we have used it for comf-Orrn expression for the time dependence of the cluster con-

. ) .- centrations, but did derive a steady-state distribution that
puting the results which we shall refer to. We have limited S o . ]
) . agrees with his numerical integration results; we have used
our calculations and comparisons to systems of supersaty-~ . - . . .
is expression for our comparison. Gillespie also derived a
rated water vapor. steady-state distribution of embryos, which we have used
Figures 9 and 10 compare the steady-state distributio ' '

. Ithough Gillespie did not explicitly present a solution for
evaluated using E¢58) at 1 ms to those of Abrahafhand the time evolution of cluster concentrations, he derived a

time-dependent matrix expression for the probability that an
embryo, initially a monomer, would be aamer at timet.
He proved that one could obtain the average number of
| X-mers at timd by simply multiplying this probability by the
total number of embryogincluding monomers unfortu-
0" 1 nately, he did not perform the necessary calculations to ob-
tain the time-dependent distributions. We did the calcula-
tions, however, and found that the embryo concentrations
1 again exhibited the same general behavior as in Figs. 6 and
7, and that they relaxed into values that agreed with
Gillespie’s steady-state expression. Figures 9 and 10 show us
that Abraham’s results predict more medium-sized and large
clusters than our model, and that the Gillespie model predicts
the most clusters in the comparison.

Many theorie$’ =3’ have been developed to estimate the
time it takes for the nucleating system to significantly ap-
o ‘ ‘ ‘ ‘ . . proach the steady state. This time lag is usually defined as

60 70

20 30 40 50 . .
Molecules per Cluster at $ = 10.52 and T = 248.45 K the moment when the current at the critical size reaches

—_ i 0 -

FIG. 10. We compare the embryo concentration steady-state distributionscijf| ].'/e‘ ap_proxmately 63.2% of .the steady-state current.
this work (line), Abraham(+), and Gillespie(Q) for water vapor having a aving a tlme—dep_ender!t expression fpl’ the embWP concen-
supersaturation ratio of 10.52 at 248.45 K. trations makes this estimation a trivial matter. Figure 11
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222 T. Olson and P. Hamill: Kinetics of homogeneous nucleation

shows that for water vapor having a supersaturation ratio of .
4.91 and at a temperature of 263.2 K, the time lag is approxi-
mately 0.28 ms. Abrahath (Table 5.6 of Ref. 18 made

similar calculations for the same system using two different |
definitions of the time lag, his results were 0.46 and 0.43 ms.
He also used the models of Wakeshifayhich predicted
0.16 ms; Colling® which predicted 0.49 ms; Fedet al,?®
which predicted 0.98 ms; and Andres and BoudArthich
predicted 0.55 ms.

We can check the accuracy of our results by comparing
our steady-state nucleation rates with experimental data. Thisz
is convenient, since most experimentalists have been con-
cerned with measuring nucleation rates, rather than distribu-
tions of embryo concentrations. Viisanenal !* present data
that shows acceptable agreement with the work of Miller
et al;*? we will use the expansion chamber results of both ™" ; S z 2 a
Viisanenet al. and Miller et al. for our subsequent compari- i
sons. Our rates will be calculated by using the definition ofFIG. 12. The nucleation rates predicted by this wdike) are compared
the nucleation current, qug), at the critical size and by with the predictions pfthe Laaksonen'gl.theory(O) and the experimental

. . . .~ . _measurements of Millezt al.(X) and Viisaneret al.(+). The temperatures
evaluating Eq.(58) at 1 ms; 1 ms is chosen because it IScorresponding to the data are given in Kelvin. A supersaturated water vapor
enough time for the embryo concentrations to sufficientlyis considered.
approach their steady-state values and it is the general dura-
tion of a nucleation pulse in the expansion chamber experi-
ments of Viisaneret al. Using the current at the critical size using the experimental data of Millest al. and Viisanen
is purely an arbitrary choice, since the currents at each et al, we will compare our nucleation rates with those pre-
value are approximately equal once they are steady. The thedicted by Laaksonest all* We choose Laaksonezt al. be-
modynamic parameter&aturation vapor pressure, the sec-cause their theory produces currents that are in excellent
ond virial coefficient, etg.were calculated using the func- agreement with experimental data for many substances, in-
tions presented by Dillmann and Meier. cluding water,n-nonane, and the lower alchohols. Unfortu-

For the system having supersaturation ratio of 7.22 and aately, Laaksonent al. did not present an expression for the
vapor temperature of 259.07 (kig. 9 Viisanenet al. mea-  nucleation rate within their study. Since they were modifying
sured the nucleation rate to be 4905 embryos/cc/sec; the the theory of Dillmann and Meier, we have used Dillmann
empirical fitting function of Milleret al. predicted a value of and Meier’s general expression for the current,
5.47e+05 embryos/cc/sec. Using Abraham’s steady-state NE 5 12
current equation(which is essentially the classical Becker l=C i( -1 9 AGX)
and Daing nucleation current we calculate that Abraham’s XV o\ 27kT  ox?
model predicts 5.08+07 embryos/cc/sec. Gillespie’s
steady-state current expression yields a nucleation rate gfhereC,_is Dillmann and Meier's condensation rate at the
1.38&+11 embryos/cc/sec. Our model predicts a value ofcritical size. We have combined Eg&88) (=0) and (39)
7.222+ 05 embryos/cc/sec. with Eq. (78) to obtain the Laaksoneet al. nucleation cur-

The system with a vapor temperature of 248.45 K and aents. The results of this comparison are given in Fig. 12. We
supersaturation ratio of 10.5Fig. 10 is beyond the range see that our predictions for the current agree quite well with
of the Miller et al.fitting function, so it will not be used here. the values obtained from the Laaksonenal. theory. The
Although Viisanenet al. measure the current to bee2 08  agreement with experiment is also very good, remaining
embryos/cc/sec, the models of Abraham and Gillespie prewithin 1 order of magnitude. Note that the curves implied by
dict its value at 6.3¢+09 and 2.92+ 13 embryos/cc/sec, our predictions are parallel to those implied by the data of
respectively. Our model yields a nucleation rate of 8668  Viisanen et al, but not to those of Milleret al. Viisanen
embryos/cc/sec. et al. found that the Milleret al. fitting function had slightly

Note that in both systems, the nucleation current calcutoo much curvature, and considered it valid only for rates
lated from Eqs(58) and(19) was significantly closer to the between £+ 02 and &+ 05. This is a narrower range than
experimentally measured values than that predicted by Abrawve have used in Fig. 12, and our agreement with Migteal.
ham or Gillespie. We will therefore assume that the distribu4s improved if we only consider the data within that range. In
tions of cluster concentrations computed from Eag) are  order to make sure that one millisecond is less thaffor
also more accurate. this data set, we have calculated the monomer depletion ra-

Two cases of agreement are not enough to assume te, which is the ratio of the time-dependent monomer con-
general trend of accuracy, however. We now make a moreentration to its initial value; see Fig. 13. These ratios stay
general comparison with theory and experiment over a widevell above the limit of 0.98 set forth by E¢61). An inter-
range of temperatures and supersaturations. In addition testing aspect of the monomer depletion ratios in Fig. 13 is

0°

o° X

leation Current (embryos/cc/sec)

3
b
®

: (78

=Xc
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o ; ; : , ; the currents for this data set are close to their steady-state
., values. The steady-state current rafkgt), is defined as,
P, T | [T (D= lg-2(t)]
., R(t)= ———F+—. (80
,oos2f x, Xxxx +*+++ B lxc(t)
g | e, . T . T el If the embryo concentrations are approximately in their
BT °o, T o, § el steady state, this ratio should approach zero. We see that
§ o . e R(t), evaluated at 1 ms, ranges frone-109 to le— 13, so
goer o, R T e the currents have indeed become steady.
§ < ° . * x y i
osser °o T, . ] VIl. CONCLUDING REMARKS
.l So | We have presented a time-dependent model for the ho-
o mogeneous nucleation process, and derived a time-dependent
v . ‘ ‘ . , °o solution, Eq.(58), to the coupled growth-rate differential
e 7 ’ Supsrsaluration Rt " ® ® equations for molecular cluster concentrations. We have also

corrected the monomer concentration growth-rate equation

FIG. 13. The monomer depletion ratio at 1 ms is plotted vs the supersatus ; ;
ration ratio for supersaturated water vapor at 259.00K, 253.7 K (*), So that it allows for the gain and loss of molecules by each

248.5 K (x), and 244.1 K(+). The monomer depletion ratio is defined as Cluster population. Although our approach is basically ki-
the ratio of the monomer concentration, at a given time, to the initial mono-netic, our evaporation rate uses the refinements to the
mer concentration. Dillmann and Meier theory presented by Laaksoreml1*

and Fordet al. This enables us to account for cluster size-

dependent surface tension variations. Additionally, our con-
that their values seem to decrease linearly as the supersadgnsation rate incorporates the translational motion of each
ration ratio increases. Furthermore, the rate of decreasgmbryo, rather than assuming that monomers are the only
seems to depend on the temperature. For a saturated vaporpving bodies. A different but equivalent solution to the
which is in equilibrium, the monomer depletion ratio must growth-rate equations is formed by expressing the exponen-
equal 1. We can use this fact to guess at a general expressitiél of the growth-rate matrix in terms of its eigenvalues and

for the lines implied by the data points in Fig. 13, eigenvectors. This form is theoretically advantageous be-
cause we find that the relationship between the relative mag-

n1(V ~—|M(T)|(S—1)+1. (790  hitudes of the eigenvalues governs the embryos’ transition
N1(0)]_g 001 from the initial transient period to the steady state. The mag-

nitude of the dominant eigenvalue also allows us to formu-

It is unknown if the temperature-dependent sldgdéT), has g . .
any additional physical meaning besides the rate at which thléﬂ?lte the steady-state cond|t_|0n, _E(GB), which predicts the .
eneral accuracy of approximating an embryo concentration

monomer depletion ratio decreases. Figure 14 confirms th& ;
as being steady.

A useful feature of our development is that it can be
applied to almost any nucleation rate theory in order to ob-
10° ; - ' ' tain the time-dependent behavior of the cluster populations.
The model requires an expression for the Gibbs free energy
to be substituted into Eq22). We have applied the free
0 E ° 1 energies of Dillmann and Meier, Delale and Meier, and
° Laaksoneret al, and in each case we obtain nucleation rates
° approximately equal to those calculated by each theory; the
. ° * E agreement is approximate primarily because our condensa-
*, + 0 ¥ tion rate differs from the applied theory’s. If the condensa-
° x tion rates are made to be equivalent, however, we find the
' agreement to be practically exact. Thus our calculated time-
o x ook . . dependent cluster growth that is associated with the applied
x o X x % . theory can be considered accurate.
o % For supersaturated water vapor, the steady-state distribu-
e tion of embryos predicted by E58) has significantly dif-
ferent values than that predicted by Abraham or Gillespie.
° ! ¢ Supersaturaion R " » * However, the nucleation current associated with our distribu-
tion is closest to experimental data. A comparison over a

FIG. 14. The steady-state current ratio at 1 ms is plotted vs the supersaty.: ; ; _
ration ratio for supersaturated water vapor at 259.00K, 253.7 K (*), Wide range of water vapor supersaturation ratios and tem
248.5 K (), and 244.1 K(+). The steady-state current ratio is defined by Peratures shows that the currents calculated from (E8).

Eq. (80). agree with the measurements of Millet al. and Viisanen

Steady-State Current Ratio at 0.001 sec
+ k%
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