
Lecture 9-3/8/10-14 

Spatial Description and Transformation 
 

Homework No. 2 – Due 9/10/14 

 2.13 (Frame arrangement only.  Do not calculate.), 2.21, 2.28, 2.31, 2.37 

 2.38 – Optional extra credit (A short proof that R
T
=R

-1
) 

 

Homework No. 1 – Preassigned, due 9/3/14 

Study Sections 2.1-2.4.   Solve Problems: 2.1, 2.2, 2.3, 2.12, 2.17, 2.18.   See PPT slides 16, 17. 

Use Matlab on 2.2 if possible. On 2.12, a rotation matrix also applies to velocity vectors.   

 

 

 

 

  

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Description of the position and orientation of a vector 

Position vector P 
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Unit vector - Orientation in principal axes 

   [ ZYX ˆ,ˆ,ˆ ] = 
222
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zyx ppp 
( kpjpip zyx

ˆˆˆ  )  

where [Px, Py, Pz] is the directional cosine of P on X, Y, and Z axes. 

[ ZYX ˆ,ˆ,ˆ ] = the directional unit vector of P. 
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AŶ  

BŶ  
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Orientation of the unit vector in frame 

 

{A} = [ AAA ZYX ˆ,ˆ,ˆ ] 

 

Rotation matrix of {B} w.r.t. {A} is the projection of each axis of {B} onto each axis of {A}.  

A dot product of two unit vectors is simply the direction cosine of the angle between the vectors.   
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 The rows are the rotated unit vectors in {B} expressed relative to the reference frame {A}. 

 The columns are the unit vectors of the reference frame {A} expressed relative to the rotated {B}. 

 As unit vectors, the magnitude of each row and column = 1 and therefore, 
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Frame Description and Mapping 

  

{B} = { RA

B , 
A
PBORG}      (2.8) 

 

Frame {B} may be constructed by (1) shifting its origin from that coinciding with reference frame {A} by 

vector 
A
PBORG and by (2) rotating its axes by RA

B . 

  

(1) Frame shift only: Vector P in {B} is expressed with respect to {A} through vector addition: 

 

      
A
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B
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The rotation matrix consists of three unit column vectors or three unit row vectors: 
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(2) Frame rotation only: If  
A
PBORG = 0, that is, the origins of frame {A} and {B} coincide, then   
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With both frame shift and rotation, vector P in {B} is given by 

 
A
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Homogenous Transform Matrix 

 

A 4x4 composite transformation matrix T representing both frame shift and rotation: 
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Position Translation 

 

If vector 
A
P1 from the origin of {A} is translated by vector 

A
Q also from the origin, define  

 
A
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A
Q     (2.24) 

 

     
A
P2 = DQ(q) 

A
P1     (2.25) 

 

The translation matrix operator DQ can be defined as  
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Two Step Transformation 

 

If frame {c} is defined relative to {B} and {B} defined relative to {A}, then transformation matrix 
A

BT 

can be derived from Eq. (2.37) – (2.39). 
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The inverse of TA

B in (2.19):  
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Reasoning for the position vector BORG
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Denavit-Hartenberg Parameters (from Chapter 3) 

 

αi-1 a i-1 di θi 

 

αi-1 =Link twist (0 or ±90º)  a i-1=Link Length di=X axis offset θi=Z rotation about X 

 

Link Transformation 

Applying the Denavit-Hartenberg parameters in sequential transformation, 
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Transform Equations 

 

Successive transformation of a position vector may be performed in a forward and reverse direction. 
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Other Ways of Rotation Description – Due to the Properties of Orthonormal Rotation Axes 

 

(A)  Skew Symmetric Matrix 

 

Rotational matrices are proper orthonormal matrices as their determinants are 1.  As such, a skew matrix 

in which S + S
T
 = 0, exists for each rotational matrix.   

 

R = (I3 – S)
-1

 (I3 + S)      (2.56) 

 

S has three parameters ( x,  y,  z).  Thus, R may be represented by  =[ x,  y,  z]
T
.  For 

application, in joint angular velocity analysis, it can be shown that for a given R, a product of R and its 

derivative forma a skew symmetric matrix,  
TRRS          (5.17)  

and has the form: 

S = 























0

0

0

xy

xZ

yZ







     (2.57) 

 

Given any position vector P, S has following property: 

 

   PSP         (5.27) 
 

where P  is a vector cross product and represents the angular velocity of a rotating axis. 
 

The application can be extended to the case of rotation about a general axis  zyx kkkK ˆ . 

 

 (B)  X-Y-Z Fixed Angles  

 

Frame {A} and {B} are coincident.  Rotate {B} about AX̂ by γ, the about Y AŶ  by β, and about AẐ  by α.   

 

)()()(),,(  XYZxyz

A

B RRRR  =

















































 













cs

sc

cs

sc

cs

sc

0

0

001

0

010

0

100

0

0

       (2.63) 

 

),,( xyz

A

B R = 





























ccscs

sccssccssscs

sscsccsssccc

  (2.64) 

 

),,( xyz

A

B R = 

















333231

232221

131211

rrr

rrr

rrr

 

 

The solutions can be found using trigonometric identities, sum of squares of sine and cosine angles, and 

the tangent angles on the terms in (2.64): 
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(C1)  Z-Y-X Euler Angles 

  

Frames {A} and {B} are coincident.  Rotate {B} about BẐ  by α, then about BŶ  by β, and then BX̂ by γ. 
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The result is the same as (2.64).  The results from rotations about three fixed axes is the same as 

the results from rotations about the moving frames taken in reverse order. 

 
 

(C2)  Z-Y-Z Euler Angles 

 

Applicable when three axes intersect as in the case of the wrist joints where yaw, pitch, and roll axescome 

together (Joint 4 and 5 are orthogonal and Joint 5 and 6 are coaxial.) 

  

Frames {A} and {B} are coincident.  Rotate {B} about BẐ  by α, then about BŶ  by β, and then bẐ by γ. 
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Other Angle-Set Conventions 

 

24 total possible.  Found in Appendix B 
 
 

 (D)  Rotation about Equivalent Angle-Axis (Euler Angle Axis) 

 

Frames {A} and {B} are coincident.  Rotate {B} about vector AK̂  by θ following the right hand rule. 
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Eq. 2.80.  Solve:    
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where [Kx, Ky, Kz]
T
 is a column vector representing the project of K onto the principal axes of {A}. 
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Steps 

  

1) Make frame {B} to be rotated coincide with frame {A}. 

2) Tilt {B} away from {A} so that ZB will coincide with K, the equivalent axis.   RA

B  

3) Rotate {B} about ZB by θ.   

4) Make the rotation appear that it was done with reference to a fixed axis of {A}       

                    
1),ˆ(  RZrotRR A

B

BA

B   See Problem 2.19 for similarity matrix. 

5) Make substitutions using  
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(E)  Euler Parameters for Equivalent Axis 

 

Associated with equivalent axis and angle of rotation  zyx kkkK ˆ  and θ. 

 

Euler parameters (Unit Quarternion) = [ 4321  ], where 
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Problem: Verify that (2.91) and (2.80) yields the same rotation. 

 

Solution: Replace the Euler parameters in (2.91) with the terms in (2.89) to arrive at (2.80). 

Use the relations 
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For a given rotation matrix, the direction vector K̂  and θ are found by extracting the Euler parameters: 
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