Lab 2 Robot Kinematics and Adept V+ Commands
9-10-14

Objectives
· Learn the Adept V+ commands for kinematics including frame rotation, translation, and forward and backward calculations of joint motion.
· Manually calculate joint by joint transformation matrices from the frames set up in Lab 1.
· Compare the results predicted by that the transformation series with the actual extracted from the robot joint movement data. Trace and explain any discrepancies in the comparison.

Part A
1. Complete the Devavit-Hartenberg tables based on the robot frame assignments from Lab 1. There are three tables for three robot configurations - Cartesian, SCARA, and articulating.. Make any corrections and adjustments on the frames before finalizing the D-H tables.

2. Build a 4x4 transformation matrix from joint i-1 to joint i for all i in the robot using θi or di as the variables. Transformations occur only in Z direction as the way the frames are set up. For six axes robot, split the propagation into two parts – Joints 1-3 and Joints 4-6.

Part B
Using one of the manipulator controllers, use the commands listed in the attached V+ Command Summary for Kinematics. Some commands require the robot being turned on and calibrated.

Part C (See the notes 1-3)

Take one of the three robot types, combine two or three joint motions into one via joint value additions or transformation. See if successive Rx(α): Dx(a):Ry(β):Dy(b):Rz(γ):Dz(c) will yield the result predicted by . Use a set of actual values (such as θ1=30º, θ2=45º,… and d3=100mm,…) for verification. Do the following:

1) Perform MatLab or Excel calculations of the equations.
2) Carry out the transformations on the selected Adept robot.
3) Compare the two results. For any discrepancies found, provide a plausible explanation for the differences, such as a mismatched frame assignment, a flipped pitch, a measurement error, etc.

Note 1. The wrist joint frames of all of the six axes robots in Lab 192 and 194 are coincidental and follows the Z-Y-Z (yaw, pitch, roll) Euler angle rotations in the textbook (p.45). In the SCARA and Cartesian robots, the yaw(on XB) and the pitch(on YB) are fixed 0º and 180º, respectively.

Note 2. A location transformation is stored in a 48-byte long data stream in a “.lc” file. The routine in the attachment will yield a screen display of input location transformation P.

Note 3. Adept Definition of Yaw, Pitch, and Roll:
Yaw = a rotation of the local reference frame about its Z axis.
[bookmark: 576]Pitch = a rotation of the local reference about its Y axis, with the yaw applied.
[bookmark: 587]Roll = a rotation of the local reference frame about the Z axis with the yaw and pitch applied

Flipped Pitch (180º about Y) Reversed orientation on both X and Z axes.

Report
Due 9/17/14. The format is similar to the Lab 1 report. Pair the joint frames and the D-H tables.
Include the results from Part A and C and a short description of the team’s experience with Part B.

Adept V+ Command Summary for Kinematics Analysis
(Search on line for “Adept Quick” for details)

DECOMPOSE V[i] = P (#P) 	; Decomposes location P (or #P) and store in array V.
DRIVE joint, angle, speed	; Drives a joint by the angle at the percent of the motor speed.
DX(d), DY(d), DZ(d)		; Gives displacement value of value d in X, Y, Z.
FLTB($S,k)			; Returns the value of a 48-byte string containing a floating point number
FRAME(p1, p2, p3, p4) 	; Yields a transformation value defined by four positions.
HERE P (or #P)			; Defines the current gripper position as Cartesian P or angular #P
INRANGE(P) 		; Determines if location P is reachable by robot arm.
LISTL				; Lists the currently defined locations and their values.
MOVE (or MOVES) P	; Joint interpolated (or straight line) move to a location P.
#PPOINT(j1, j2, …)		; Precision point (location) set by the specified joint angles or offsets.
RX(v), RY(v), RZ(v) 		; Rotates X, Y, Z axis by the angle v. XYZ are world coordinates.
SET P (or #P) = expression	; Defines a location vector P (or #P) with TRANS or #PPOINT.
SHIFT(P BY x, y, z) 		; Translates location P by amount specified in XYZ direction
SOLVE.ANGLES P	 	; Finds the joint rotation angles for given transformation P.
SOLVE.FLAGS V[]		; Finds config.bits (left-right, above-below, pitch flip) in joint array V.
SOLVE.TRANS #P 	; Finds the transformation for given joint (angular) values of #P.
TRANSB			; Returns a transformation value represented by a 48-byte string.
TRANS(x, y, z, n, p, r) 	; Transformation (location) of a six-axis Cartesian vector

Relative Positioning – Matrix addition:
SET S = P:Q:R		; Additions of Cartesian coordinate values (x, y, z, n, p, r)

Translation and Rotation:
SET Q = P:DX(a):DY(b):DZ(c) 	; Shift P by a along X, then by b along Y, then by c along Z	
SET #Q = #P:RX(α):RY(β):RZ(γ) 	; Rotate #P by α on X, then by β on Y’, then by γ on Z’’

[bookmark: _GoBack]SET #Q = #P:RX(α): DX(a):RY(β):DY(b)	; Combined rotation and translation Q .
6-axis robot wrist transformation (Euler Z-Y-Z angle transformation): RZ(α):RY(β):RZ(γ)

Useful V+ Programs and Commands for Kinematics Calculation

.PROGRAM SHOWTRAN()
; Displays a 3x4 transformation matrix from location P stored in a 48 byte data stream.
FOR i = 0 TO 2
FOR j = 0 TO 3
index = 4*i+12*j +1
TYPE /F10.5, FLTB($TRANSB(P),index), /S ; 10 spaces, 5 digits each. No line feed.
END
TYPE
END
.END

.PROGRAM STRIPJNT(N)
; Strips the Nth parameter value from location array P. A precision point #P may be used for P.
;
DECOMPOSE V[]=P ; (or #P) Split P into its component parameter values and store in V.
FOR I=0 TO 5
IF I==N THEN
V [I]=0
END
SET P=TRANS(V[0], V[1], V[2], V[3], V[4], V[5]) ; Strip P of its nth parameter value.
; SET #P=#PPOINT(V[0], V[1], V[2], V[3], V[4], V[5]) ; For joint values #P
.END

.PROGRAM SHOWCOMP(N)
; Displays 1x6 or 1x4 array of P or #P.
;
DECOMPOSE V[]=P (#P)	; Split P (or #P) into its component values and store in V.
FOR I=0 TO 5
TYPE /F10.5, P, /S ; 10 spaces, 5 digits each. No line feed.
END

Forward Kinematics Calculation
Given the angular or linear joint values stored in array V[i], i=0,…,5, find the transformation P from V with a report on any errors.
.PROGRAM SOLVTRAN()
; Gives a Cartesian transformation of a set of joint values with any displacements.
;
PROMPT “Input up to six joint values for #P: “, v[0],v[1],v[2],v[3],v[4],v[5]
PROMPT “Input displacement values for #P: “, w[0],w[1],w[2],w[3],w[4].w[5]
FOR I=0 TO 5
V[I]=V[I]+W[I]
END
SOLVE.TRANS P, ERR=V[]

Backward Kinematics Calculation
Given the Cartesian coordinates of the end effector position in array V[i], i=0,…,5, find the joint angle array ANG[i], i=0,…,5 with configuration flags (left-right, above-below, pitch flip) set in V[] and any error report.
Note: The inverse calculations are complicated and there often are multiple solutions. The flags are used to specify the selections made along the backward path of joint calculations.

.PROGRAM SOLVANGL()
;
	FOR i = 0 TO 5
	 v[i] = 0
	END
	DECOMPOSE v[] = P
	PROMPT "Input the displacement values for p: ", w[0], w[1], w[2], w[3], w[4], w[5]
	FOR i = 0 TO 5
	 v[i] = v[i]+w[i]
	END
;
	SOLVE.ANGLES ANG[], flags, error = P, v[], SOLVE.FLAGS(v[])
	TYPE
	FOR i = 0 TO 5
	 TYPE /F9.4, ANG[i], /S
	END
	TYPE
.END
oleObject3.bin

image4.wmf
T

T

T

Q

R

P

Q

P

R

=

oleObject4.bin

image1.wmf
T

1

2

oleObject1.bin

image2.wmf
T

2

3

oleObject2.bin

image3.wmf
T

3

4

