Chapter 6. Manipulator Dynamics
11-3-14

Quiz on Nov. 11 on Homework #8

Homework #8. Not collected.
Solve 6.1 (Answer partially given in the textbook). 6.12 (Answer given). 6.16.
Show how (6.32) is derived from (6.15) and (5.45).

Trace the steps taken to derive (6.36) from (6.12).
Verify the formulation of (6.42).

See the Example in Section 6.7 — Two link robot arm with simplifying assumptions.
Check the vector cross multiplications at several places in the solution.

Acceleration of Rigid Body — Definition:
Acceleration of linear velocity vector Vg in frame {B}
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Acceleration of angular velocity vector @ q in frame {B}
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Linear Acceleration:
From (5.12),
d
V, = a(;‘RBQ)=§RE‘VQ+’*QBXBARBQ (6.5)
Differentiating (6.5) and a term for linear acceleration of the origin of {B},
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With the linear acceleration of {B}orig
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When BQ is constant,
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Angular Acceleration:
To find the angular acceleration of {C} w.r.t. {A}, differentiate
AQ ="Q,+iRPQ, (6.13)

A= 0, +%(QRBQC)=AQB+QRBQC+AQB><§RBQC (6.15)

Rigid Body Mass Distribution
Inertia tensor — Describes the distribution of the mass around the center of a rigid body.
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AP is the location vector of the differential volume dv.
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Inertia Tensor of {A}: M-ty 1, -1,
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Mass moment of inertia:
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Parallel Axis Theorem:

The moment of inertia at the center of the mass is at the minimum quantity along the axis of
rotation. The moment of inertia of any axis parallel to the axis of rotation is given by
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where r¢ = the distance from the axis in {A} to the center of the mass in {C} and m = the point
mass at the center.

Inertial tensor of a mass in frame {A} w.r.t. frame {C} with its origin at the center of the mass.
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- Location of the center of mass in {A}.

The frame {A} has its origin at *P, = %[w | h]
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Example 6.2
Newton’s Equation on Force: F=mv, at the center of mass
Euler’s Equation on Moment: N=°lo+ox lo atthe center of mass

I = inertia tensor in frame {C} with its origin at the mass center
Newton-Euler Dynamic Equations

Derivation of angular acceleration
Forward angular velocity propagation



i+1
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A ="y +iRP O+ Q< FRP Q. from (6.15)
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Follow the derivation of (6.32) from (6.15) and (5.45)

M, ="IR'é+" R0, x 0,2, +6,,"Z,, (6.32)
For prismatic joints, ‘o, =6, =0, so

i+ldll+l=i+ilRi0:)l

Derivation of linear acceleration

From (6.12) and by taking similar steps to derive the angular acceleration,
d
ERPQ={R "V, +1Qx{R"Q

Vo ="Vgo,, +5R®Vo +"Q xfRPQ+7Q x(" Qx4 RPQ)
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Setting {A}={i+1} and {B}={i} and factoring out 'R,

i+l - iHlppi s 0 e
V=" RO+ &X',

+o (0 x'P,)] (6.34)

For prismatic joints, add two more terms to (6.34) per (6.10)

Mo :HilR[i O+ & x'Py+ o x(' o x'Py )] 42 ey % Ay 2, +d,, "7, (6.35)
Linear acceleration of the center of mass, from (6.12)
Trace the steps taken in applying (6.12),

'Wei=" @' P+ @y x( 3 x' Py )+'V, (6.36)

The inertial force and torque acting at the center of the mass:
From (6.32) and (6.36)
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(6.37)

where 3x3“ 1 is the inertia tensor in {C} at the center of the k‘;'

[

H7Backward Iteration for Joint Forces and Torque

i+ 13

Force and torque balance equations at the center of mass of link i:

i Fi :ifi _i+1iRi+lfi+1 (6'38)
iNi =ini _ini+1 +(ipi _iPCi )Xifi _(ipi+1_iPCi)Xifi+1 (6.39)
i PI — O

Rearranging the equations and adding rotations;
=R R (6.41)

i=iel
'n,='N,+,R"*"n_,+P,x'F+'P xR, (6.42)
Finally, the joint torque is the Z component of the vector representing the inertial torque:
=7, (6.43)
For prismatic joints, using t to denote force:

r :ifiT iZ"i (6.44)



Forward and backward iterations: Eq (6.45)-(6.53)

Forward - Link velocities and accelerations via the Newton-Euler (6.31)-(6.37).
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Backward - Find joint forces and torques via (6.38)-(6.44).
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See the Example in Section 6.7 — Simplified two link robot arm.

Check the vector cross multiplications at several places in the solution.
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For Link 1:
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For Link 2:
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The backward calculations of *f,.?n,,'f,.'n, for Links 2 and 1 can be carried out similarly.

The joint torques ,,z, are the Z components of .'n,,’n, .



