Chapter 6. Manipulator Dynamics
11-3-14

Quiz on Nov. 11 on Homework #8

Homework #8. Not collected.
Solve 6.1 (Answer partially given in the textbook). 6.12 (Answer given). 6.16.
Show how (6.32) is derived from (6.15) and (5.45).

Trace the steps taken to derive (6.36) from (6.12).
Verify the formulation of (6.42).

See the Example in Section 6.7 — Two link robot arm with simplifying assumptions.
Check the vector cross multiplications at several places in the solution.

Acceleration of Rigid Body — Definition:
Acceleration of linear velocity vector Vg in frame {B}

BV, (t + At) -V, (t)

. d ;
°© dt ° IA'LTJ At ©.1)
Acceleration of angular velocity vector @ q in frame {B}
. d . RO (t+AD-2Q, (1)
", =—"Q, = < < 6.2
©dt ° IA'm At ©.2)
Linear Acceleration:
From (5.12),
d
V, = a(;‘RBQ)=§RE‘VQ+’*QBXBARBQ (6.5)
Differentiating (6.5) and a term for linear acceleration of the origin of {B},
. d . d
Vo = G GR™V)+ Qe xaR*Q+" 0, x (R°Q) (6.7)

=(sR®Vo+" Qg xRV )+ Qs x A REQ+"Q x(SR®V,+7Q: xR%Q)  (6.8)

With the linear acceleration of {B}orig

A\/QZA\/‘BOWJQBXQRBVQ +2° Q% gR®V, AR®V, +"QxfR®Q+"Q, x("QyxSR®Q) (6.10)

When BQ is constant,

Vo ="Vgo,, +5R®Vo +7Qp xFRPQ+AQ x(" Qx4 R®Q) (6.12)



Angular Acceleration:
To find the angular acceleration of {C} w.r.t. {A}, differentiate
AQ ="Q,+iRPQ, (6.13)

A= 0, +%(QRBQC)=AQB+QRBQC+AQB><§RBQC (6.15)

Rigid Body Mass Distribution
Inertia tensor — Describes the distribution of the mass around the center of a rigid body.

dv

Ap

v

{A}
AP is the location vector of the differential volume dv.

XX Xy _Ixz

Inertia Tensor of {A}: M-ty 1, -1,
_Ixz _Iyz Izz

Mass moment of inertia:
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Parallel Axis Theorem:

The moment of inertia at the center of the mass is at the minimum quantity along the axis of
rotation. The moment of inertia of any axis parallel to the axis of rotation is given by

A C
Izz: I

2
2 TM-T,

where r¢ = the distance from the axis in {A} to the center of the mass in {C} and m = the point
mass at the center.

Inertial tensor of a mass in frame {A} w.r.t. frame {C} with its origin at the center of the mass.

A C 2 2 C 2
,,="1,+m(x,~+y., )="1,+mr,
Ay _C
Ixy_ Ixy—mxcyc

Po=lx v z]
- Location of the center of mass in {A}.

The frame {A} has its origin at *P, = %[w | h]
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Example 6.2
Newton’s Equation on Force: F=mv, at the center of mass
Euler’s Equation on Moment: N=°lo+ox lo atthe center of mass

I = inertia tensor in frame {C} with its origin at the mass center
Newton-Euler Dynamic Equations

Derivation of angular acceleration
Forward angular velocity propagation



i+1

a)i+1:i+ilRia)i +‘9.i+1i+lZAi+1 from  (5.45)

A ="y +iRP O+ Q< FRP Q. from (6.15)
(6.15%)

(6.157)

Follow the derivation of (6.32) from (6.15) and (5.45)

M, ="IR'é+" R0, x 0,2, +6,,"Z,, (6.32)
For prismatic joints, ‘o, =6, =0, so

i+ldll+l=i+ilRi0:)l

Derivation of linear acceleration

From (6.12) and by taking similar steps to derive the angular acceleration,
d
ERPQ={R "V, +1Qx{R"Q

Vo ="Vgo,, +5R®Vo +"Q xfRPQ+7Q x(" Qx4 RPQ)

A
Vo =

Setting {A}={i+1} and {B}={i} and factoring out 'R,

i+l - iHlppi s 0 e
V=" RO+ &X',

+o (0 x'P,)] (6.34)

For prismatic joints, add two more terms to (6.34) per (6.10)

Mo :HilR[i O+ & x'Py+ o x(' o x'Py )] 42 ey % Ay 2, +d,, "7, (6.35)
Linear acceleration of the center of mass, from (6.12)
Trace the steps taken in applying (6.12),

'Wei=" @' P+ @y x( 3 x' Py )+'V, (6.36)

The inertial force and torque acting at the center of the mass:
From (6.32) and (6.36)



F, =mo,,

N, =l + o, x% o,

(6.37)

where 3x3“ 1 is the inertia tensor in {C} at the center of the k‘;'

[

H7Backward Iteration for Joint Forces and Torque

i+ 13

Force and torque balance equations at the center of mass of link i:

i Fi :ifi _i+1iRi+lfi+1 (6'38)
iNi =ini _ini+1 +(ipi _iPCi )Xifi _(ipi+1_iPCi)Xifi+1 (6.39)
i PI — O

Rearranging the equations and adding rotations;
=R R (6.41)

i=iel
'n,='N,+,R"*"n_,+P,x'F+'P xR, (6.42)
Finally, the joint torque is the Z component of the vector representing the inertial torque:
=7, (6.43)
For prismatic joints, using t to denote force:

r :ifiT iZ"i (6.44)



Forward and backward iterations: Eq (6.45)-(6.53)
Forward - Link velocities and accelerations via the Newton-Euler (6.31)-(6.37).

(6.49, 6.50)

i+1a)i+l:i+i1Ria)i + éi+1i+12i+l (6.45)
M, ="IR'é+" R0, x 0,2, +6,,"Z,, (6.46)
"0, =R O+ @ %' Py + o, x(C o x' Py )] (6.47)
i+lDC - :i a-)i Xi+1Pi+1+i+la)i+1 X(i+la)i+lXi+1Pi+1)+i+1Di+l (648)
iJrl|:i+1 = mi+1i+1')c i+l

i+lN iJrl:CiJr1 I i+1 i+1a')i+1 +

i+lN i+l=c”1 I i+1 iJrld)i+1_{_Hla)iﬁ-lxprlI i+1 i+1a)i+1

Backward - Find joint forces and torques via (6.38)-(6.44).

i f; ='l i+1iRi+1fi+1 +F (6.51)
ini =iNi +i+1iRi+lni+1+iPi x! F +iPi+1Xi+1iRi+Lfi+1 (6.52)
r=n''Z. (6.53)

See the Example in Section 6.7 — Simplified two link robot arm.

Check the vector cross multiplications at several places in the solution.
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For Link 1:
L s .
o =w,+6'2,=[0 0 4]

o, =6,'2,=0 0 4]

¢, s 0}0 gs,
'W,=R'0, =|-s, ¢ 0| g|=|gc
0O 0 1|0 0
i j k i j k| [os ]| |-1,6%+gs,
Wer=tox' P+, x( @ x'Pe)+'0,=|0 0 6, |[+'@o,x|0 0 6, |+|gc |=| 1,6, +gs,
L, 0 O , 0 0 0 0
_I16)12+951
'Fo=m'o, =m| L6, +gs,
0

1 C; 1. 1 i+1 1 1. 1 1 T
N, =%, o+ o<, o, = 0t +'w, x 0w, =[0 0 0]

For Link 2:
c, s, 00 0 0
20,=R'w, +0,°Z,=|-s, ¢, 0[O0 |+ 0|=] O
0 0 1|6,| |6, |6,+6,
0
2w, =| 0
6, +6,
c, s, O|-1L6?+gs
2V, =2R[*0,+ @, x'P,+ 0, x(*@,x°P,)|F’R%, =|-s, ¢, O L&, +gs
0 0 1 0
i ok i k
V2= 0 <P, + 20, x(P 0, <P, )+°0, =| 0 0 6, |[+*w,x| 0 0 6,+6, |+?0,
l, 0 0 I, O 0

2F2 = m2 Zocz
2N2:C2|22a')2+2a)2x2|22a)2 :[0]262)2+20)2 x[0]2w2 = [O 0 O]T

The backward calculations of f,.?n,,'f,.'n, for Links 2 and 1 can be carried out similarly.

The joint torques ,,7, are the Z components of .'n,,*n, .



Dynamic Equations — General Structure
State Space equation:

r=M(©)6+V(0,6)+G(©) (6.59)
where,
M (®) = n X n mass matrix for the terms containing 49, Jd=1.n
V(@,G)): n x 1 vector containing centrifugal (6;7) and Coriolis (6,0, ) terms
G(®)=n x 1 vector containing gravity (g) terms.

Configuration Space equation:
r=M(©)6 + B(©)[660]+C(0)[0?]+G(0) (6.63)
where,
B, (®) = a matrix of Coriolis coefficients

C, (®) = matrix of centrifugal coefficients

[©6]=66, 66, .. 6,.6,] avectorof joint velocity products (6.64)

[@2]= ;9-12 07 .. 9n2], a matrix of centrifugal coefficients (6.65)

The 2 link manipulator example:

I ) b, Ir. . C,, G, | &2
|:Z'1}: Hiy ﬂm}{%}_’{ 1}[6’1 0, ]_’_[ 11 12}|:0.12}+G(®)
75 | My Mo || 6, b, C,i Cyp | 6,




Internet Downloads:

The Coriolis effect is a deflection of moving objects when they are viewed in a rotating reference
frame. In a reference frame with clockwise rotation, the deflection is to the left of the motion of
the object; in one with counter-clockwise rotation, the deflection is to the right. ----Wikipedia ----

Inertial frame of reference Rotating frame of reference
-*0 =90°
0.4 7 Coriolis ———
Centrifugal —>

Net ——
0.2



http://en.wikipedia.org/wiki/Rotating_reference_frame
http://en.wikipedia.org/wiki/Rotating_reference_frame

Lagrangian Dynamic Formulation

Quadratic form of manipulator Kinetic energy, analogous to k = % mv?

Kinetic energy: k, = %miu;uCi + EcoiT U, o, (6.69)
k=Sk
k(®,0)= %@TM (©)0 & in vector form (6.71)
Potential energy: Uy =—m,"gT Py + Uy

(6.73)
u=>u,

The difference between the kinetic energy and the potential energy of a body:
L(®,0) =k(0,0) —u(0)

Lagrangian
(6.75)

Lagrangian Equation of Motion (as applied to robot arms) derived from Newton’s Law,

ii—£=r (6.77)
dto® O
d &k &k &

Example application of Lagrangian equation — Pendulum

Kinetic energy K = %m(la))2

Potential energy U = mgl(1—cosé)

Lagrangian L=K-U = %m(lco)2 —mgl(1—cosé)

oL : oL ) d oL 2

— =-mglsind —=ml"w ——=ml

00 ow dt Sw
Lagrangian equation: da 4 =ml’®-mglsind =0

dt oo 066



Example 6.5 — An RP manipulator

Kinetic energy: k, = 1mllft9'f +% |,,67

12
22291

1 : ; 1
k2 =Em2(d§l912 +d22)+5|

k(©,0) =k, +k,
Potential energy: u, =m,l,gsing, + m,l,g

u, =m,d,gsing, +my,d, g
u(®) =u, +u,

i _ (rnlll2 + Izzl + IzzZ + mzd;)gl
) m,d,

d k[ (MIE+1,,+1,, +m,d])6, +2m,6, d,d,
dt 50 m,d,

& [0
5 | m,d,é?
<l

[g(m,l, +m,d,)cosé,
gm, siné, '

0

Lagrangian equation:

T
From 7 :{ 1] extract
7,

M (®) = 2 x 2 matrix of 4, ,d, terms — Angular acceleration

V(©,0)=2 x 1 vector of €2,6, ,d2,d,, 4, d, terms — Centrifugal and Coriolis
G(®)= 2 x 1 vector of g terms - Gravity



Formulation in Cartesian Space
From the Joint space equation ; r=M(®)O +V(®,®)+ G(0®)

The equivalent Cartesian space equation for Force-Torque vector F:

F=M, (@)X +V,(0,6)+G,(®) (6.91)
From =1 (®)F > F=J"(0)

F=J"[M(@©)6+V(0,6)+G(0)] (6.94)
Defining a Jacobian relating the Joint space equation to the Cartesian space equation

X =10

> X =J0+16

> 0=J1X-J0) (6.97)
Substituting (6.97) into (6.94)

F=JT[M(@®)J (X -J0))+V(0,6)+G(0)] (6.98)

Then, the relationship between the Cartesian expression and the Joint expression in light of
(6.91) is:

M (©)=J]"TM(@®)J] (@)
V,(0,6)=3TV(©,6)-M®)J 1] (6.99)
G, (©)=J7"G(®)

Example 6.6: Derive the Cartesian space dynamics equations for the two link RR robot,

. s, O
Given J(@))z{l ?

Le, 1,

find J (@) = { . 0]3‘(@):['&29% 0}

Llos, [—le, -1, Ls, -1s,6, 0

}.from (5.55),

Then, derive M (©), V,(©,0), G, (®) from (6.99), (6.60),(6.61), and (6.62)

Cartesian configuration space torque
=37 ()M, (@)X +V,(0,0)+G,(O)] (6.104)
or dividing Vx terms into Coriolis and Centrifugal terms,

r=JT(©)M(@)X +B, (©)|6d]+C, (©)6’|+G,(©) (6.105)



Friction

Friction force F(@,G)) may be added to (6.59) or (6.104) to account for the effect of friction on

Dynamic Simulation

Numerical integration method is used to solve the acceleration problem of the manipulator as
torque is applied to the joints,

From (6.104), solve for
6=M(O)r-v(0,6)-6(©)-F(6,0) (6.115)
O(t + At) = O(t) + O(At) , analogous to V(t)=Vo + at and

O(t + At) = O(t) + O(t) At + %@(At)At2 , analogous to S(t)=So + Vo(t) + 2 at?>  (6.117)



