
Animatics Institute
Training Manual

2008

Animatics Institute Training, October 2008

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 2

Contents

Quick Start Guide�� 4
What You Will Need to Get Your SmartMotor™ Running �� 4
A Quick Look at the SmartMotor™ Interface�� 6

SmartMotor™ Controller Overview� 10
SmartMotors Hardware and Control at a Glance�� 10
Programs, Variables and Modes of Operation summary �� 10
SmartMotor Communications at a glance� 12
Pre-Addressed Motors on Boot-Up�� 12
Addressing SmartMotors from a Host PC or other Serial Device�� 14
SmartMotor Program Flow at a Glance� 15
SmartMotor Modes of Operation and Motion Control Commands�� 22
SmartMotor I/O Control at a Glance�� 33
Default States and special uses of I/O ports�� 34
I/O Programming examples �� 35

"F=#" Function Command Overview�� 37
Special Function and Special Cases�� 39

1. Serial Buffer command: ! YES….., "!"…… is a command……�� 39
2. Break Control Commands: (means to control internal break option)�� 39
3. MF0 and MS0. �� 39
4. UG (Default state control of Port G Input pin). � 39
5. PID1, PID2, PID4, PID8 commands.� 40
6. KG parameter. (Gravitational PID term)�� 40
7. ENC0 (Default) and ENC1 (Optional) commands�� 40
8. D command.�� 40
9. Bs Status Bit, (Syntax Error Bit) also known as the Bull$H1T command……�� 41
11. RUN? �� 41
12. SILENT, SILENT1�� 41
13. VLD and VST, � 41
14. RETURNF, RETURNI (PLS firmware only)�� 42
15. MTB (Mode Torque Break)�� 42
16. TH and THD commands and the Bh Status Bit�� 42
17. AMPS command. (Defaults to 1000)�� 42
18. STACK�� 43
19. X and S commands�� 43
20. Ba (Peak Over Current) Status Bit.�� 43
21. LOAD and RCKS command.�� 44

System Design Techniques to Aid in Motor Protection�� 45
Selecting Power Supplies: Switching, Linear, and Unregulated Power Supplies:�� 45
Mechanical Brakes:�� 45
Position Error Limits:�� 46
Amplifier Tuning�� 46
Power supply Voltage Levels�� 46
Firmware Options:�� 47
Hard Stop Crashes:�� 47
Loss of Power at motor connector while under load:�� 47

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 3

Contents

Example SmartMotor™ Code� 48
Various Loops, Trigger Events and Subroutines�� 48
Home to Hard Stop� 51
Home To Index (3 Examples)�� 52
Cycle Time Calculator Subroutine�� 53
Long Term Memory Example Storing Error Bits� 53
Analog Controlled variable Speed with Dead-band and offset�� 54
Slave Conveyor Application�� 55
16-Position Pre-select, BCD-Triggered�� 56
16-Subroutine Pre-select, BCD-Triggered�� 58
Record and Playback Exampl�� 60
Expanded I/O using the DINIO-485�� 61
Expanded I/O using the Anilink Opto-1 Board�� 63
Hardware Error Handling Setup-Code: (See next page for Interrupt Subroutines)�� 65
Traverse and Take-Up Winder Application� 67

SmartMotor™ Interfacing�� 75
SmartMotor™ Connections:� 75
RS-232 Programming cable schematic to communicate with one motor via the main 7W2 Connector:�� � � � � � � 75
RS-232 Serial Daisy-Chain cable to communicate to multiple motors via the DB-15 Connector� � � � � � � � � � � � � � � � � 76
RS-485 Parallel Daisy-Chain to communicate to multiple motors via the DB-15 Connector� 76
Connecting an external encoder for External closed-loop operation or for electronic gearing:� � � � � � � � � � � � � � � � � � � 77
Connection to a PLC or stepper card output for running in Step Mode:�� 77
Connecting 2 motors for Electronic Gearing:�� 78
Connection to Anilink Devices (Both LCD RJ Connection and OPTO-1 Molex connection shown)�� � � � � � � � � � � � 78
Typical Limit Switch Inputs:�� 79
Simple Start/Stop Switch Input�� 79
Start-E Stop Input�� 79
Analog Input to a SmartMotor:� 80
Obtaining 2 functions out of One Input:� 80
Push-Button and Toggle Switch into single input:�� 81
Binary (4 Bit BCD) input control:�� 81
Cascade I/O Fault Control�� 82
DE (Drive Enable) Option�� 83

Command Set Overview�� 84
Modes of Operation:�� 84
Position Commands:�� 84
External Encoder Motion Commands:�� 84
Program Flow Structures:�� 85
Variable/Data Storage EEPROM Read/Write Commands:�� 85
Variables/System-Variables:�� 85
System State Flags:�� 86
Reset System State Flag:�� 86
AniLink™ I/O Commands:�� 86
Report to Host Commands:�� 86
Motor Over Travel Limit Commands:�� 86
Motor I/O Commands:� 87

FAQ� 89
Downloading and Uploading Programs to SmartMotors�� 89
I/O Handeling�� 92
Power Supplies and BackEMF Subjects�� 93
Serial Communications�� 95
Tips and Tricks to Better Code and Motor Performance:� 99

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 4

Quick Start Guide

What You Will Need to Get Your SmartMotor™ Running

A SmartMotor™1.	
A computer running MS Windows 95/98, 2000, NT, XP or VISTA.2.	
A DC power supply for those SmartMotors that requre DC voltage.3.	
A data cable to connect the SmartMotor to the computer’s serial p o r t4.	
or serial adapter.5.	
Host level software to communicate with the SmartMotor6.	

When relying on Torque/Speed curves, pay close attention
to the voltage on which they are based. Also, special care
must be taken when near the upper voltage limit or in vertical
applications that can back-drive the SmartMotor. Gravity
influenced applications can turn the SmartMotor into a generator
and back-drive the power supply voltage above the safe limit for
the SmartMotor. Many vertical applications require a SHUNT
to protect the SmartMotor from damage. Larger open frame
power supplies are also available and may be more suitable for
cabinet mounting.

Combo-D-Sub to
SmartMotor™

RS232 to
Computer

Power for
SmartMotor™

The first time user of the SM1700 through SM3400 series
motors should purchase the Animatics SMDEVPACK. It
includes the CBLSM1-10 data and power cable, the SMI
software, the manual and a connector kit.

The CBLSM1-10 cable (right) is also available separately.
Animatics also has the following DC power supplies
available for Series 4 SmartMotors: PS24V8A (24 Volt,
8 Amp) and PS42V6A (42 Volt, 6 Amp). ServoStep
SmartMotors operate up to 75VDC. They can use any
of the power supplies, plus higher voltage supplies.
For any particualr motor, more Torque and Speed is
available with higher voltage.

Optional
SmartMotor™
cable (CBLSM1-10)

Optional
PS24V8A
or PS48V6A
power supply

Many vertical
applications require
a SHUNT to protect
the SmartMotor
from damage

For the AC SmartMotors, SM4200 through SM5600 series, Animatics offers:

CBLSMA1-10 	 10’ communication cable•	
CBLAC110-10 	 10’ 110 volt AC single phase power cord•	
CBLAC200-10 	 10’ 208-230 volt AC 3 phase power cord•	

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 5

Quick Start Guide

Software Installation

Follow standard procedures for software installation using either the Animatics SMI CD-ROM or files
downloaded from the Animatics Website at www.animatics.com.

After the software is installed, be sure to reset your computer before running the SMI program.

With the SMI Software loaded and your SmartMotor connected as shown above, you are ready to start
making motion. Turn the SmartMotor’s power on and start the SMI Program.

SmartMotor Backgound

The SmartMotor is an entire Servo Control System in a single component. Of course, it’s shaft position,
velocity and acceleration are programmable but there is much more. The SmartMotor also has analog
and digial I/O and can be programmed to operate by itself in a language similar to Basic. The same
commands one would use to program a SmartMotor can be sent to it over RS-232, or RS-485, depending
on your product selection. These commands, explained later in this guide, can be sent using most any
host terminal software, but the SMI "SmartMotor Interface" program does this and much more.

Example of
Connecting a
SM2320D
SmartMotor™
usinga CBLSM1-10
cable assembly
and PS24V8A
power supply

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 6

Quick Start Guide

A Quick Look at the SmartMotor™ Interface
The SMI software connects a SmartMotor, or a series of SmartMotors to a computer or workstation
and gives a user the capability to control and monitor the status of the motors directly from a standard
computer. SMI also allows the user the ability to write programs and download them into the SmartMotor’s
long term memory.

For the benefit of the first-time user, the SMI software starts with the "SmartMotor Playground". If you
are using a ServoStep or other RS-485 based SmartMotor, start by clicking on the "Configure Port"
button and select "RS-485".

Now, click in the "Detect Motors" button in the upper-right. If your SmartMotor is not properly detected,
use the utility to the upper left to select the more appropriate COM port. If you still have no success, it
is likely that your computer is not configured properly for RS-232 communications. This problem should
be corrected, or another computer substituted.

The SmartMotor
Playground allows
the user to
immediately begin
making motion
without having to
know anything
about the
programming.

Every SmartMotor
has an ASCII
interpreter built in. It
is not necessary to
use SMI to operate
a SmartMotor.

Within the SmartMotor Playground, you can experiment with the many different modes of operation. You
might start by moving the position slider bar to the right and watching the motor follow. By selecting the
"Terminal" tab, you can try different commands found later in this guide.

While SmartMotor Playground is useful in testing the motor and learning about its capabilities, to
develop an actual application, you will need to click on the "Close" button at the bottom and launch the
SMI development software.

WARNING: The SmartMotor Playground changes both Software and Hardware Limit settings in the
background which may cause unexpected results later. It is best to fully reset the motor upon exiting
the Playground!

If you are using
a SmartMotor with
PLUS firmware, you
may need to check
the "Disable
Hardware Limits"
boxes and clear the
error flags to get
motion. DO NOT
disable limits if this
action creates a
hazzard.

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 7

Quick Start Guide

Learning the SmartMotor Interface (SMI)

The SMI main screen shows a menu section across the top, a Configuration Window on the left, an
Information Window and a Terminal Window in the center colored blue.

With your motor connected and on, click on the purple A located mid way on the toolbar. If everything is
connected and working properly, the motor should be identified in the Information Window. If the motor
is not found, check your connections and make sure the serial port on your PC is operational.

MotorView gives
you a window into
the status of a
SmartMotor

PLUS and
ServoStep
Firmware require
the Limit Inputs to
be either tied low, or
disabled to achieve
motion.

Monitoring Motor Status

To see the status of the connected motor, go to the "Tools" menu, select "Motor View" and double click
on the available motor. Once the MotorView box appears, press the "Poll" button. SmartMotors with
PLUS Firmware and Servo- Step require limits to be connected before the motor will operate. If you see
limit errors, and you want to move the motor anyway, you don’t have to install limits. Instead, you can
redefine the Limit Inputs as General Inputs, and reset the errors by issuing the following commands (in
bold) in the Terminal Window (be sure to use all caps and don’t enter the comments).

UCI 	 'Configure Port C (limit) as general input
UDI 	 'Configure Port D (limit) as general input

ZS 	 'Reset errors

Normally, when the motor is attached to an application that relies on proper limit operation, you would
not make a habit of disabling them. If your motors are connected to an application and capable of
causing damage or injury, it would be essential to properly install the limits before experimenting

Acceleration,
Velocity and
Position fully
describe a
trapezoidal motion
profile

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 8

Quick Start Guide

Initiating motion

To get the motor to make a trajectory, enter the following into the Terminal.

A=100 	 'sets the Acceleration
V=1000000 	 'sets the maximum Velocity
P=300000 	 'sets the target Absolute Position
G 	 'Go, initiates motor movement

After the final G command has been entered, the SmartMotor will accelerate up to speed, slew and then
decelerate to a stop at the absolute target position. The progress can be seen in the MotorView.

Writing a user program

In addition to taking commands over the serial interface, SmartMotors can run programs. To begin
writing a program, press the button on the left end of the toolbar and the SMI program editing window
will open. This window is where SmartMotor programs are entered and edited.

Enter the following program in the editing window. It’s only necessary to enter the boldface text. If you
have no limits connected, you may need to add the Limit redefi nition code used in the previous exercise
to the top of the program. The text preceded by a single quote is a comment and is for information only.
Comments and other text to the right of the single quotation mark do not get sent to the motor. Pay
close attention to spaces and capitalization. The code is case sensitive and a space is a programming
element:

A=100		 'Set buffered acceleration
V=1000000 	 'Set buffered velocity
P=300000 	 'Set buffered relative move
G 		 'Start Motion
TWAIT 	 'Wait for move to complete
P=0 		 'Set buffered move back to home
G 		 'Start Motion

END 		 'End program
After the program has been entered, select File from the menu bar and Save as . . . from the drop down
menu. In the Save File As window give the new program a name such as "Test.sms" and click on the
Save button.

Transmitting the program to a SmartMotor

Before transmitting the program, press the STOP button in the MotorView window. To check the
program and transmit it to the SmartMotor, click on the button located on the tool bar. A small window
will ask what motor you want to download to. Simply select the only motor presented. SMI2 compiles
the program during this step as well, so if errors may be found in the fi le. If errors are found, make the
necessary corrections and try again.

Insure motors are
properly mounted
when under load

1000000 Scaled
Counts/Sample=
about 1860 RPM
for SM2300 series
motors, about 930
RPM for series
SM3400, 4200 and
5600 motors, and
about 465 RPM for
ServoStep motors.

Finally, you will be presented with options relating to running the program. Simply select Run. If the
motor makes only one move, that is probably because it was already at position 300000. Press the RUN
() button on the toolbar and the motor should make both moves.

Since the program ends before the return move is finished, you can try running the program during a
return move and learn a bit about how programs and motion work within the SmartMotor.

To better see the motion the new program is producing, press the Poll button in the MotorView window
and run the program.

SMI2 transmits the
compiled version of
the program to the
SmartMotor.

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 9

With the program now downloaded into the SmartMotor, it is important to note that it will remain until
replaced. This program will execute every time power is applied to the motor. To get the program to
operate continuously, you will need to write a "loop", described later on.

A program cannot be "erased"; it can only be replaced. To effectively
replace a program with nothing, download a program with only one
command: END.

Looking at the Position Error and feeling the motor shaft will show
that the motion, so far, is a bit sloppy. That is because the motor’s
PID Filter is tuned by default to be stable in almost any start-up

environment. Try issuing the following commands in the Terminal and run the program again:

KP=200 	 'Increase Proportional Gain (P) (Stiffness)
KD=600 	 'Increase Derivative Gain (D) (Dampening)

F 		 'Update PID Filter
The motor shaft position should feel and appear much stiffer now. More can be done, however, to make
the shaft settle faster and be more accurate. Issue the following commands to increase what is called
the "Integral Gain":

KI=100 'Increase Integral Gain (I)
KL=100 'Increase I Limit

F 	 'Update PID filter

By running the program with the MotorView on, you will see improved results. Note the lower Position
Error. For most applications, these parameters will suffice, but if still greater precision is required, more
can be found on the topic of tuning later in this manual in the section on tuning. Also, the Tools menu
has a Tuning utility that can be further useful. Whether you accept the preceding values, or you come
up with different ones on your own, you should consider putting the preceding commands at the top of
your program, with the F command to put them to work. Alternatively, if you are operating a system with
no programs in the motors, be sure to send the commands promptly after power-up or reset.

Many are surpised at the vast array of different paramters the SmartMotor finds stable. SmartMotors
are so much more forgiving than traditional controls because of their all-digital design. While traditional
controls also boast very fast PID rates, the conventional analog input servo amplifi er has several
calculations worth of delay in the analog signaling, making them difficult to tune. By virtue of it’s all-
inclusive design, the SmartMotor requires no analog circuitry or associated noise immunity circuitry,
and so the amplifi er portion conveys all of the responsiveness the controller can deliver.

Tuning the Motor
Most SmartMotors™
show more than
adequate
performance with
the same tuning
parameters. This is
largely due to the
all-digital design.

Refer to the section
on the PID fi lter for
more information on
Tuning.

Quick Start Guide

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 10

SmartMotor™ Controller Overview

SmartMotors Hardware and Control at a Glance
All Items here are important points of reference:
(please see appropriate sections in the manual or help files for more detail)

Each SmartMotor is an Integrated Motion controller, Drive Amp and Motor.
As a result, care should be taken with regards to hook-up, communications, and control.

Supplying Power to SmartMotors:

NEMA 17, 23, and 34 frame sizes:

All SmartMotors in frame sizes from NEMA 17 to NEMA 34 run off of 24-48VDC. Under no circumstances should they be allowed to run
off of any higher voltages. Lower voltages could cause a brownout shutdown of the CPU or what would appear as a down power reset
under sudden load changes. If power is reversed on any NEMA 17-34 frame size SmartMotors, immediate damage will occur and the
SmartMotor will no longer operate.

Note: During hard fast decelerations, a SmartMotor can pull up supply voltages to the point of damage if a shunt resistor pack
is not used.

CPU, I/O, and Communications Power restrictions:

CPU Power:
All SmartMotors have an internal 5VDC Power supply to run the internal CPU. This supply can be easily damaged if an external voltage
source of a higher potential is applied. Do not exceed 5VDC on and I/O pin or 5VDC pin on any SmartMotor.

I/O Restrictions and limitations:
Each on-board I/O pin has a minimum amount of protection consisting of a 100-Ohm Current limit resistor and a 5.6VDC Zener diode.
Each I/O pin also has a 5Kohm pull-up resistor.

When assigned as outputs, they act as a push-pull amplifier that drives hard to either the positive or negative 5VDC rail. This means they
are not open collector I/O pins. Each I/O Pin can sink up to 12mA and source up to 4mA. Exceeding this could result in damage to the
I/O port.

Communications:
Each Motor has a 2 wire RS-232 port. This port meets IEEE standards with full +/- 12VDC potential on the transmit line. Proper serial
ground signal referencing and shielding techniques should be used.

Under no circumstances should the shield of a cable be used for the RS-232 ground reference. This could result in noise or corrupt data
as well as ground loops that could damage the serial port chip set.

Each SmartMotor boots up default to the ECHO_OFF state. This means that nothing received is transmitted or echoed back out. This
is important to remember in serial "daisy-chain" set-ups. They also boot-up defaulted to base address zero meaning they will listen and
respond to any incoming valid SmartMotor commands.

Programs, Variables and Modes of operation summary:

Programs:
All SmartMotors will run any valid program stored in memory upon boot-up by default. The only way to prevent this is to add the RUN?
command at the top of the program or send any communications to the SmartMotor within the first 500msec.

Any PRINT statement containing long text strings should be reviewed carefully. Any text strings that appear as valid commands could
cause other motors in the "Addressed" state to respond. using GOTO and multiple GOSUB or GOTO calls from multiple sources could
cause unexpected results. This can cause the program stack pointer to become corrupt. At that point the CPU will not know where to go
in the program. (Multiple sources means from the RS-232 port, RS-485 port and/or Program.)

System and User Variables:
Each SmartMotor runs and operates from volatile RAM. This means that upon loss of power, all variables lose their present value
and will be zero at the next power-up. All tuning parameters will return to factory defaults. Motor addressing will re-set to zero. Clock,
Counter and Position registers also reset to zero.

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 11

The only way to insure desired values upon power-up is to store them in hard code in a downloaded program. All SmartMotor variables
are pre-defined as shown in the manual and help files. No user defined variables are available. All variables are global within a single
SmartMotor. This means that any update or change to a variable will be seen in any subsequently called subroutines. If it is desired to
have local variables to a given subroutine, they should be assigned the needed value within that subroutine as needed.

Modes of Operation:
Mode Set (MS), Mode Follow (MF1, MF2, MF4), and Torque Mode (MT) are the only modes that do not require a "G" command
to initiate. This means the mode will be immediately initiated upon receiving the associated Mode commands. This could result in
immediate shaft movement. Be careful when initiating these Modes of operation.

Mode Follow Ratio (MFR) and CAM Mode (MC, MC2, MC4, MC8) both require a "G" to become fully effective, however, they also require
Mode Follow commands in their set-up. This means that during the set-up process, motor shaft movement could result.

All other modes require a "G" to initiate or to change velocities and/or accelerations.

Port G on all motors defaults to "G –sync" which means if it is grounded, it will be no different that having received a "G" command. If Port
G is grounded prior to power-up, the processor will see this as a valid "G" command upon boot-up. Depending on code, this could cause
unexpected motor shaft movement.

The "D" register is the relative commanded move register. Any non-zero values of D could result in unexpected moves upon any valid "G"
command be it from the "G" command or the grounding of port G.

SmartMotors default to position mode on boot-up. They only require a non-zero velocity and accel a long with a non-zero D value or P
value other than present position to initiate a move.

Motor response to Loss of power and Faults:
Loss of Power:
All SmartMotors will coast or "free-wheel" on loss of power. This is because there is no control power to prevent it from occurring.
You may notice what appears as a dynamic braking characteristic upon loss of power. This occurs to some extent due to internal
capacitance in the drive amp circuit or external power supply circuit resistance or capacitance. To insure fast fail-safe stopping for safety
reasons, some mechanical brake type of mechanisms should be used.

Hardware Protection Faults:

In all firmware revisions prior to V4.76, Motor hardware protection faults (Over Current and over Temp) result in "free-wheel" of motor
shaft. This is to prevent further damage to the motor or drive amp. Versions 4.76 and later implement dynamic braking on error.

Software protection faults:
Limit switch inputs and Position error limits are both "software" protection faults. This means they are not firmware unchangeable.
The effects of Limit switches and Position error can be changed via valid software commands or set-up parameters. Position error is
predicated by a value set by the user and can drastically effect motor response under varying load conditions and tuning. Limit switches
can be set up to cause the motor to servo in place instead of free wheel. Refer to specific firmware addendums for various limit switch
options and capabilities.

Motor Response with respect to Motor Tuning:
Care should be taken with any closed loop servo with regards to motor tuning. Improper tuning may cause undesired effects ranging
from excessive noise and vibration to mechanical damage to a machine or overheating of the motor or drive amp. Improper tuning can
also lead to repeated or undesired amounts of over current or position errors. Proper tuning can make or break a successful application

Motor Torque Limits: {AMPS command and T (Torque) command}:
Motor T (torque) command is only for use in Mode Torque (MT). It has no effect on motor operation outside of Mode Torque.

The AMPS command has effect over all other modes of operation. It limits absolute maximum power available from the drive amp to the
motor windings as a function of percent duty cycle of PWM (Pulse Width Modulation). The AMPS command should be used when it is
desired to limit motor torque to a sensitive or torque input limited load. IT may also be used to reduce the chance of reaching peak over
current errors on high acceleration applications.

Error Handling, Motor Status Bits and Internal conditions:
SmartMotors have a 16 Bit status word that contain interrupt registers triggered by selected events. These events include Position
Errors reached, Over Current reached, Limit switch conditions, Syntax errors and so on. In addition, in the newer motors, Bus Voltage,
Drive Current, and Motor Temperature are also available. By proper use of these status bits very simple and very flexible error handling
can be achieved. Motors can be made to respond under varying load conditions in different ways and recover from any given software
or hardware fault in a controlled manner.

Please review this in detail in the manual and help files.

SmartMotor™ Controller Overview

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 12

SmartMotor™ Controller Overview

SmartMotor Communications at a glance

Notes on Boot-Up sequence of SmartMotors with regards to communications:

SmartMotors default to 9600 Baud, no parity 8 data bits and 1 stop bit. (9600,N,8,1). All SmartMotors boot up in ECHO_OFF mode with
global address zero. This means they will respond to globally addressed commands, i.e. commands proceeded by dec128 or hex80.

With in the first 500msec’s or so of power up, if they have not received any serial communications, they will begin executing code
previously downloaded to them from the top down.

If the Code begins with RUN? , execution will stop at that line until a "RUN" is received via RS-232 serial port.

Multiple motors on a communications line

If more than one motor is to be placed on a communications line, they must be set up properly to avoid communications errors.

RS-232

If RS-232 is used from a host PC or other RS-232 compatible device, all motors must be in ECHO mode.
While in ECHO mode, all data reaching a motor’s received pin will be "echoed" back out it’s transmit port.
Since RS-232 serial lines must be daisy-chained together, the motors must be in ECHO mode to work properly.

RS-485

If RS-485 is used, all motors must be in ECHO-OFF mode. RS-485 is a parallel communications network. If any motor was to echo out
commands received, it would cause all motors or any other devices on the network to get hit with the same data.

Note: SmartMotors use 2 wire RS-485 standards. This means line biasing determines whether or not the motor is in transmit
mode or receive mode at the hardware level. To insure motors do not hang up in the transmit mode, there must be a minimum
of a 200mVolt differential between RS-485 A and B channels.

This is easily achieved by placing a pull down resistor of approximately 500 Ohms from the B channel to ground somewhere on the
RS-485 network.. All SmartMotors have a 5Kohm pull-up resistor on both A and B channels already. The 500 Ohm resistor will provide
the enough biasing needed to make the hardware default to the receive state. If there are long distances between motors, it may be
necessary to provide a resistance across channels A and B. A 200 Ohm resistor wired from A to B at the remote end of the RS-485 line
should provide ample voltage drop for needed biasing.

If the above electrical rules are not applied, communications cannot be guaranteed to work.

Note: Resistor values above are approximate. The actual values needed may vary depending on communications line impedance
due to things such as cable length.

Pre-Addressed Motors on Boot-Up
If it is desired for the motor to have a non-zero address on boot-up, the motor must have a program downloaded to it with the set address
command at or near the top of the program.

Example:

SADDR1 	 will set the motor’s address to 1.

Or:

ADDR=1 	 will set the motor’s address to 1.

Note:	 "ADDR=" syntax not available in v4.40 series firmware."

	 where ADDR= is matching blue from above.

The motor address command uses integer numbers 1-100, however to specifically address a particular SmartMotor, you must precede
the desired command with decimal or hex equivalent addresses. If a motor’s program begins with SADDR1, then a command specifically
meant for that motor must be preceded by dec129 or hex81for example.

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 13

SmartMotor™ Controller Overview

Example 1:	 PRINT(#131,"A=1200",#13)
		 The above code sends out dec131 immediately followed by A=1000 immediately followed by a carriage return.

Example 2:	 PRINT(#131,"A=1200 ")
		 would give the same result because a space was included after A=1200.

Global addressing:
As mentioned at the beginning, all motors without an address respond to any command preceded by dec128 or hex80. This is also true
for any motor with an address that is not in "sleep" mode.

If a motor is in Sleep mode, it will only start listening again if the WAKE command preceded by its address is sent to that motor.

Example:	 If hex85SLEEP is transmitted, motor 5 will go into "sleep mode."

	 If hex80x=123 is transmitted, every motor on the serial line will have

	 variable x updated to 123 except motor 5.

	 If hex85WAKE is transmitted, motor 5 will "wake up" and will respond once again to commands.

	 Note: WAKE and SLEEP do not affect the ECHO state.

Addressed or De-Addressed state:

It is important to understand addressed or de-addressed states of SmartMotors. These states determine whether or not a SmartMotor
will respond to commands.

Lets assume for example that we have 5 motors on a communications network.. All of them have programs downloaded with addresses
1-5 respectively via the SADDR command.

On Boot-up all are ready to listen. They will respond to either a globally addressed command or a specific motor will respond to a
specifically addressed command.

Once a specific address is sent out on the line, that motor will be in the "addressed" state and All other motors will be in the "de-addressed"
state.

What this means is that from that point on, any command sent out to the motors without an address proceeding it, will be acted upon only
by the motor in the addressed state. All other motors will basically ignore anything received.

By sending out a command preceded by the global address (hex80 or dec128), all motors will be placed into the "addressed state and will
remain in that state until another specific address is transmitted. Under the above case of 5 motors addressed 1-5 respectively, if a hex89
for example or any other address outside of hex80-hex85 is sent, all motors would become "de-addressed". No motor would respond to
any command until an address within the range of motors on the line is received.

This does come in handy if other Non-SmartMotor devices are on the same network.

Example:

Suppose you have the same 5 SmartMotors on line with a barcode reader or temperature controller. If you wanted to send set-up
parameters to these devices but wanted to insure the SmartMotors would ignore the set-up parameters (since they are more than likely
not even valid SmartMotor syntax), you could "de-address" all SmartMotors by sending out an address outside the bounds of any motor
on the line.

Note: Most RS-485 devices operate this way.

Any hex value>79 or decimal ASCII value > 127 will be seen as a control or address character by SmartMotors. Care should be
taken when mixing SmartMotors with other devices on an RS-485 bus.

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 14

SmartMotor™ Controller Overview

Addressing SmartMotors from a Host PC or other Serial Device
Note: The following only applies to an RS-232 serial daisy chain where the motors do not have programs downloaded with addresses in
them. It will not work on an RS-485 network. Motors must be pre-addresses in downloaded programs for an RS-485 networks to work at
all.

It is important to realize the boot-up state of SmartMotors from the first section to understand this sequence. Please review it if you have
not already done so.

Since SmartMotors without addresses default to address zero (hex80 or dec128), a sequence of commands must be issued in proper
order to achieve addressing of the SmartMotors.

SmartMotors without programs downloaded into them will not retain addresses from this procedure upon loss and
return of power!

The following is an example sequence of addressing 3 SmartMotors from the SMI software terminal screen!

Assumptions are as follow:

Host PC is set up for 9600 Baud,N,8,1 since this is the power-up default for SmartMotors.1.	
Three SmartMotors are wired in serial daisy chain with Tx of Host PC wired to Motor-1 Rx, Motor-1 Tx wired to Motor-2 Rx, 2.	
Motor-2 Tx wired to Motor-3 Rx, Motor-3 Rx wired to Host PC Rx. (Tx is RS-232 transmit, Rx is RS-232 Receive)

0ECHO_OFF 	 Places all motors in echo off
0SADDR1 	 Set first motor to address 1
1ECHO 	 Set it to echo mode so the next motor will be able to receive commands
1SLEEP 	 Set it to sleep mode so it will not act upon following commands
0SADDR2 	 Set next motor to address 2 and repeat sequence
2ECHO
2SLEEP
0SADDR3
3ECHO
3SLEEP
1WAKE 	 Set all motors to wake status.
2WAKE
3WAKE

Note: SMI Software automatically replaces leading numbers in commands with a decimal offset of 128.
In other words, 0ECHO_OFF resulted in "(dec128)ECHO_OFF" being transmitted.

This is the equivalent from any other software source:

(dec128)ECHO_OFF
(dec128)SADDR1
(dec129)ECHO
(dec129)SLEEP
(dec128)SADDR2
(dec130)ECHO
(dec130)SLEEP
(dec128)SADDR3
(dec131)ECHO
(dec131)SLEEP
(dec129)WAKE
(dec130)WAKE
(dec131)WAKE

Note: (hex80-83) is the same as (dec128-131), All lines must be terminated with either a carriage return (dec13) or space
character.

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 15

SmartMotor Program Flow at a Glance

Introduction to the SmartMotor Language

SmartMotors use a simple form of code similar to BASIC.

Various commands include means of creating continuous loops, jumping to different locations on given conditions, and doing general
math functions.

All commands begin with Capitol letters. •	
All variables are pre-assigned and are lower case only.•	
Each program must contain at least one occurrence of the •	 END statement.
Each subroutine call must have a label with a •	 RETURN statement somewhere below it.
All programs will automatically execute upon power-up if nothing is received on the serial port within the first ½ second or so.•	

If you add the statement: RUN? to a program, it will not execute any code past the RUN? until the SmartMotor receives a RUN
command via the serial port.

This means you can add RUN? to the very top of a program to prevent any code from executing on power-up.

You can however, at any time, tell the motor to run subroutines via serial port even if the stored program is not running.

Like BASIC, you can print using the PRINT command to print to the screen.

Sample Program:

RUN?
PRINT("Hello World",#13)
END

This is a simple program that will not run on power up. You can run it by typing in the RUN command at the terminal screen.
It will then simply print Hello World to the terminal screen and then end.

To put comments in the program you precede your line of text with an apostrophe:

RUN? 	 ' the program stops at this line until a "RUN" is received.
PRINT("Hello World",#13) 	' #13 is a carriage return
END 	 ' the end statement marks the end of the program.

If you wanted to have the above example run on power-up, just delete RUN? from the program.

General Expressions

There are means of assigning variables different values as well as checking values and comparing them. These are the "operators" for
doing that:

Assigning values

=	 (Equal sign) Assignment operator

Note: No spaces are used on either side of the equals sing.

a=5 		 'assign to a the value of 5
c=@P 		 'assign to c the present motor position

V=500000 	 'set velocity to 500000

SmartMotor™ Controller Overview

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 16

SmartMotor™ Controller Overview

Math operators:

+ 	 Addition
-	 Subtraction
*	 Multiplication
/	 Division

Note: No spaces are used on either side of any math operators.

a=b+c 	 ' set a to b+c
P=a*1000 	 ' set commanded position to a multiplied by 100

Comparison Operators:

==	 Equals (use two equal signs in a row)
=	 Not equal
<	 Less than
>	 Greater than
<=	 Less than or equal
>=	 Greater than or equal
&	 Bit wise AND (bit wise means binary number comparison)
|	 Bit wise OR (these operators are good for handling I/O)

Note: No spaces are used on either side of any comparison operators. Examples of some of these will be shown on the following
pages.

Flow Control Commands

IF, ENDIF

If you want a portion of code to execute only once based on a certain condition then use the "IF" statement.

Once the execution of the code reaches the 'IF’ structure, the code between that 'IF’ and the following 'ENDIF’ will execute only when the
condition directly following the 'IF’ command is true. For example:

IF a==1 	 ' If the variable a is equal to 1
 b=20 	 ' Set the variable b to twenty
ENDIF 	 ' End the IF code block and continue on to the next line of code

In the above example,. b will be set to 20 only if a is equal to 1

ELSE, ELSEIF

The 'ELSE’ and 'ELSEIF’ commands can be used to add flexibility to the 'IF’ statement. What if you wanted to execute different code for
each possible state of variable 'a’?

You could write the program as follows:

IF a==1 	 ' If the variable "a" is equal to 1
 b=20 	 ' Set the variable "b" to twenty
ELSEIF a==2 ' Else if the variable "a" is equal to two
 c=30 	 'Set "c" to thirty
ELSE 		 'Else If a is not equal to one or two
 d=1 		 'Set "d" to one
ENDIF 	 'End IF

There can be many 'ELSEIF’ statements, but at most one 'ELSE’. If the 'ELSE’ is used, it needs to be the last comparison check statement
in the structure before the 'ENDIF’.

You can also have 'IF’ structures inside 'IF’ structures. That is called "nesting" and there is no practical limit to the number of "IF"
structures you can nest within one another.

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 17

SWITCH, CASE, DEFAULT, BREAK, ENDS

 Long, drawn out 'IF’ structures can be cumbersome and burden the program, visually. In these instances it may be better to use the
'SWITCH’ structure.

The following code will accomplish the same thing as the previous ELSE, ELSEIF example.

SWITCH a 	 ' look at the variable "a"

 CASE 1 	 ' in the case that it equals 1
 b=20	 ' Set "b" to twenty
 BREAK

 CASE 2 	 ' in the case that it equals 2
 c=30	 ' Set "c" to thirty
 BREAK

 DEFAULT 	 ' If a is not equal to 1, or 2
 d=1 	 ' Set "d" to one
 BREAK

ENDS 		 'End SWITCH

Like a rotary switch directs electricity, the 'SWITCH’ structure directs the flow of the program. The 'BREAK’ statement then makes the
processor jump to the code following the associated 'ENDS’ command.

The ENDS command means "end switch" and marks the end of the SWITCH routine.

The DEFAULT command covers any condition not found by the CASE commands.

The default command is optional.

SmartMotor™ Controller Overview

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 18

WHILE, LOOP

The most basic looping function is a 'WHILE’. The word 'WHILE’ is followed by an expression that determines whether the code between
the 'WHILE’ and it’s associated 'LOOP’ will execute or be passed over.

While the expression is true, the code will execute. •	
An expression is "true" when it’s value is non-zero. •	
If the expression results in a zero value then it is false. •	

Example 1
WHILE 1==1 	' 1 is always true
	 UA=1 	' Set Port A output to one (5 volts)
	 UB=0 	' Set Port B output to zero (zero volts)
		 ' This code serves no practical purpose. It is for example only.
LOOP 		 ' this code will loop forever

	
Example 2

a=1 		 ' Initialize variable a
WHILE a!=0 	' while a does not equal zero
	 a=0 	 ' Set a to zero
		 ' This code serves no practical purpose. It is for example only.
LOOP 		 ' This never loops back

Example 3
a=0 		 ' Initialize variable a
WHILE a<10 	' a starts less
	 a=a+1 ' add one to a each time you go through the loop
LOOP 		 ' loop back to the WHILE until a is 10 or greater

The task or tasks within the "WHILE" loop will execute as long as the function remains true.

The 'BREAK’ command in conjunction with the IF structure can be used to break out of a 'WHILE’ loop. It is very handy for error checking
and Input triggers.

a=0
WHILE a<10 		
	 a=a+1 	 ' add one to "a" each time you go through the loop
	 IF b==1 	 ' if b is equal to 1
		 BREAK ' Break out of while loop immediately
	 ENDIF
LOOP 			 ' loop back to the WHILE until a is 10 or greater

NOTE: "b" could have been changed via serial port update.

SmartMotor™ Controller Overview

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 19

SmartMotor™ Controller Overview

Subroutines, Flow routing, and Timing

GOTO#	 	 go to a labeled line in the program

Note: Line Labels are always the capitol letter C followed by a positive integer between 0 and 999 with no spaces in between.

Example:

WHILE 1 		 ' short for WHILE 1==1
	 a=@P 		 ' Assign present motor position to "a"
	 IF a>3175
		 GOTO1 ' Go to a line labeled C1
	 ENDIF
LOOP 			 ' loop back to the WHILE

C1 			 ' C1 is a label, it could be any number 0-999 after the C

PRINT("Motor position exceeded 3175 encoder counts",#13)
GOSUB#	 go to a subroutine label in a program

Subroutines are a collection of code that will run when ever called via a GOSUB call.

WHILE 1 			 ' short for WHILE 1==1
 IF UCI==0 		 ' If Port C input equals zero
 GOSUB5 			 ' run subroutine C1
 WHILE UCI==0 LOOP 	 ' prevent multiple calls to C5
 ENDIF
 IF UCI==1 		 ' If Port C input equals 1
 GOSUB6 			 ' run subroutine C2
 WHILE UC1==1 LOOP 	 ' prevent multiple calls to C6
 ENDIF
LOOP 				 ' loop forever

C5
 PRINT("Port C is at zero volts",#13)
RETURN

C6
 PRINT("Port C is at five volts",#13)

RETURN

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 20

SmartMotor™ Controller Overview

STACK 		 Resets the GOSUB return stack

In the CPU, the STACK is like a register that holds a stack of numbers telling the CPU where to go next in the program.

In the event you direct program flow out of a subroutine without executing the associated RETURN command, you could corrupt the
stack.

Example: (of really bad programming)

C100
	 GOSUB105	 ' run subroutine C105
	 GOTO100
C105
	 GOTO110 	 ' jump out of subroutine 105 and to line 110
RETURN
C110
GOTO100

In the above example a GOTO was used to get out of a subroutine.

The CPU would be expecting to see a RETURN and then return to a label but the GOTO defeated it. Subsequent calls to the same
subroutine by the GOTO100 line at the bottom would eventually cause what is termed as a "stack overflow" because each time the
subroutine is called, the stack register remembers the line where the subroutine was started and adds it to the stack. Eventually, the stack
will get too full and the CPU will get a stack overflow error.

Example: (of not much better programming, but shows the STACK command usage)

C100
STACK		 ' reset the stack
GOSUB105		 ' run subroutine C105
GOTO100
C105
	 GOTO110 	 ' jump out of subroutine 105 and to line 110
RETURN
C110
GOTO100C100
STACK		 ' reset the stack
GOSUB105		 ' run subroutine C105
GOTO100
C105
	 GOTO110 	 ' jump out of subroutine 105 and to line 110
RETURN
C110
GOTO100

By Issuing the command Stack, the program clears the stack to zero and will sequentially run down in the code from that point on following
directive of what ever comes up.

Note: Although sometimes necessary, Programs should be written in such a way as to never need a STACK command.

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 21

SmartMotor™ Controller Overview

WAIT		 pauses program execution for a given amount of time

WAIT=2000		 ' Wait 2000 sample periods
WAIT=a+2000		 ' Wait a+2000 sample periods

A sample period is about 1/4000 of a second depending on the model motor, so the above code would cause about ½ second pause or
more.

The following code would be the same as "WAIT=40000", only it will allow you to execute code during the wait if you place it between the
'WHILE’ and the 'LOOP’.

CLK=0			 ' sets system clock to 0
WHILE CLK<40000		 ' while less than about 10 second have passed
	 IF UAI==0	 ' Monitor input port A to see if it goes low
		 GOSUB100	 ' If it does, jump to subroutine 100
	 ENDIF		
LOOP			 'Loop back

The above code example will check if input 'A’ for about 10 seconds to see if it ever goes low. After that, it continues on to any code that
follows the WHILE LOOP.

TWAIT	 Trajectory WAIT

If the motor is busy moving to a commanded position, TWAIT will stop program flow until it has finished the move.

In other words, any time the motor is actively trying to reach a commanded position in any mode other than Torque Mode, it is actively
pursuing a trajectory.

Example:

MP		 ' Set Mode to position mode	
P=1000	 ' Set commanded position to 1000
A=1000	 ' Set Acceleration to 1000
V=100000	 ' Set velocity to 100000
G		 ' Go (Start moving)
TWAIT		 ' Wait here until the move is complete

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 22

SmartMotor™ Controller Overview

SmartMotor Modes of Operation and Motion Control Commands
SmartMotors can be operated in many different modes. You can switch to and from almost any mode freely at any time. Consult the
command reference for more details on any given command.

he following is an overview of each mode of operation:

MP		 Mode Position (Position Mode)

Absolute Mode

Position mode is the default power-up mode of operation for the SmartMotor.
In Position mode, the SmartMotor operates on Absolute position commands in encoder counts

Minimum Requirements for a move to occur in position mode:

Initiate the Mode via the 	 MP command (if not already in Position mode)•	
Non-zero value of Velocity	 V=•	 ###	 set velocity equal to ###
Non-zero value of Acceleration 	 A=•	 ### 	 set acceleration equal to ###
Absolute commanded position	 P=•	 ###	 set commanded position to ###
Go command to initiate the move	 G	 Start move immediately•	

Note: 	 Commanded position must be different than present position to cause a move.

If Acceleration or Velocity are at zero, the Motor will not move.

Example 1:	 Basic Absolute Move

MP		 ' set motor to position mode (may be required of currently in another mode)
V=100000	 ' set velocity to 100000
A=1000	 ' set acceleration to 1000
P=20000	 ' set commended absolute position to 20000
G		 ' Go (Start moving)

In the above example, the motor will start moving upon seeing the G command and will stop at an absolute position of 20000 encoder
counts.

Example 2:	 Two Moves with a delay in between

O=0		 ' set current position to zero
MP		 ' set motor to position mode (may be required of currently in another mode)
V=100000	 ' set velocity to 100000
A=1000		 ' set acceleration to 1000
P=20000	 ' set commended absolute position to 20000
G		 ' Go (Start moving)
TWAIT 		 ' wait here until the motor has reached 20000
WAIT=4000	 ' wait about 1 second
P=-500		 ' Set commanded position of –500
G		 'start moving to new commanded position

 Note: motor move will be made at previously commanded speed and acceleration.

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 23

Example 3:	 Change in commanded speed and acceleration on the fly

O=0		 ' set current position to zero
MP		 ' set motor to position mode (may be required of currently in another mode)
V=100000	 ' set velocity to 100000
A=1000	 ' set acceleration to 1000
P=1000000	 ' set commended absolute position to 1000000
G		 ' Go (Start moving)
WAIT=8000	 ' wait about 2 seconds
V=800000	 ' set new velocity of 800000
A=500		 ' set new acceleration of 500
G		 ' initiate change in speed and acceleration

Example 4:	 Change in point of origin between moves

O=0		 ' set current position to zero
MP		 ' set motor to position mode (may be required of currently in another mode)
V=100000	 ' set velocity to 100000
A=1000		 ' set acceleration to 1000
P=2000		 ' set commended absolute position to 2000
G		 ' Go (Start moving)
TWAIT		 ' wait until move is complete
O=0		 ' set current position to zero|

WAIT=8000	 ' wait about 2 seconds
P=2000		 ' set commended absolute position to 2000
G		 ' Go (Start moving)
TWAIT		 ' wait until move is complete

Note: motor has moved a total of 4000 counts, but it’s current position is only 2000 because it’s position was reset to zero in
between moves. The Origin command "O" can be set to any number.

Relative Mode

In Relative Mode the SmartMotor moves relative to where it is at any time by the use of the D (Distance) command. Minimum requirements
are the same as in absolute mode.

Example:

MP		 ' set motor to position mode (may be required of currently in another mode)
V=100000	 ' set velocity to 100000
A=1000	 ' set acceleration to 1000
D=2000	 ' set commended relative position move to 2000
G		 ' Go (Start moving 2000 counts)
TWAIT		 ' wait until move is complete
G		 ' Go (move 2000 counts again)
TWAIT		 ' wait until move is complete
G		 ' Go (One more time)

The motor will have moved 3 2000 count moves or a total of 6000 counts upon completion.

SmartMotor™ Controller Overview

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 24

MV		 Mode Velocity (Velocity Position Mode)

Velocity mode allows the SmartMotor to run at a constant commanded speed. SmartMotors close the speed loop on position, not
encoder counts per unit time. As a result, moving to and from Position mode to velocity mode is very simple.

Minimum Requirements for a move to occur in velocity mode move:

Initiate the Mode via the 		 MV command (if not already in velocity mode)•	
Non-zero value of Velocity		 V=###		 set velocity equal to ###•	
Non-zero value of Acceleration 	 A=### 		 set acceleration equal to ###•	
Go command to initiate the move	 G		 Start move immediately•	

Example 1:	 Basic Constant Velocity Move

MV		 ' set motor to Velocity mode	
V=100000	 ' set velocity to 100000
A=1000		 ' set acceleration to 1000
G		 ' Go (Start moving)

In the above example, the motor will start moving upon seeing the G command,. It will accelerate up to a velocity of 100000 at a rate or
1000 samples /sec/sec. It will then stay at that speed until told to do otherwise.

Example 2:	 Change in commanded speed and acceleration on the fly

O=0		 ' set current position to zero
MV		 ' set motor to Velocity mode
V=100000	 ' set velocity to 100000
A=1000	 ' set acceleration to 1000
G		 ' Go (Start moving)
WAIT=8000	 ' wait about 2 seconds

V=800000	 ' set new velocity of 800000
A=500		 ' set new acceleration of 500
G		 ' initiate change in speed and acceleration

In this example, the motor’s move parameters will be changed about 2 seconds after the initial commanded move was made.

SmartMotor™ Controller Overview

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 25

SmartMotor™ Controller Overview

MT		 Mode Torque (Torque Mode)

In Torque Mode the motor shaft will simply apply a torque independent of position. The internal encoder tracking will still take place, and
can be read by a host or in a program, but the value will be ignored for motion because the PID loop is inactive. To specify the amount of
torque, use the "T=" command, followed by a number between -1023 and 1023.

Positive numbers apply a clockwise torque. Negative numbers apply a counter-clockwise torque.

The Default value for T is zero. Keep in mind, speed is proportional to counter torque or load on the shaft when in torque mode. The larger
the load, the slower the motor will turn for a given torque value.

Minimum Requirements for a Torque Mote to operate:

Initiate the mode with the MT command

Note: Torque mode is an immediate response mode. No "G" is required for the motor to go into torque mode. Upon receiving
MT, the motor will immediately go into torque mode at the present value of T.

Example 1:	 Basic Constant Torque Move

T=200		 ' set torque to 200
MT		 ' set motor to Torque Mode

Note: Again as stated above, The motor will immediately start moving upon receiving the MT command. The example shows T
being set prior to MT so as to have a known commanded torque ahead of issuing MT.

Example 2:	 Changing from Velocity Mode to Torque Mode dynamically

MV		 ' set motor to Velocity mode
V=100000	 ' set velocity to 100000
A=1000	 ' set acceleration to 1000
G		 ' Go (Start moving)
WAIT=8000	 ' wait about 2 seconds
T=200		 ' set torque to 200
MT		 ' set motor to Torque Mode
WAIT=8000	 ' wait about 2 seconds
OFF		 ' turn the motor off

In the above example, about 2 seconds after going in to velocity mode, the motor is switched to torque mode. Then 2 seconds later, the
motor is turned off.

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 26

SmartMotor™ Controller Overview

Mode Follow (Electronic Gearing)

	 MF1, MF2, MF4, MF0, RCTR	

Mode-Follow allows an external encoder to be used as a command reference to position. It is an extension of Position-mode to some
degree in that it operated on a continuously updating commanded position in absolute position mode.

Minimum Requirements for a move to occur in Mode Follow:

Phase A and B of external encoder must be wired into ports A and B.•	
The External encode must be powered up and be 5VTTL compatible.•	
MF1, MF2,•	 or MF4 must be issued

Note: 	 Single ended or differential encoders may be used wapping phases swaps direction
	 that motor will turn for a given external encoder direction of rotation.

As in Torque mode, MF1, MF2, and MF4 are immediate in response. No G is required to make the motor go into Mode Follow.

A G can, however re-initiate mode-follow after an error such as over current or position error.

Definition:

	 MF1		 read external encoders at 1:1 of base encoder counts.
	 MF2		 read external encoders at 2:1 of base encoder counts.
	 MF4		 read external encoders at 4:1 of base encoder counts.
	 MF0		 Zero the external encoder count read register.
	 RCTR	 	 Report external encoder-count register value.

Note: SmartMotors default to reading external encoders at full quadrature (MF4). If an external encode is wired up and you read
the external counter register (RCTR to read counter), it will display counts dynamically without issuing MF4. The motor will not
be in Mode follow, but the counter will be active.

Example: 	

Say you have a free-standing encoder with 500 lines or pulses per revolution on each phase A or B. This means that for each
revolution of the encoder shaft, the respective phase will pulse high and back low 500 times:

If MF1 is issued, the SmartMotor will move 500 internal encoder counts for each single revolution of the 5000 line external encoder.

If MF2 is issued, the SmartMotor will move 1000 internal encoder counts for each single revolution of the 5000 line external encoder.

If MF4 is issued, the SmartMotor will move 4000 internal encoder counts for each single revolution of the 5000 line external encoder.

MF4 makes use of what is termed as "full quadrature" of a standard quadrature output encoder. As a result, MF4 alows maximum
resolution tracking of the external encoder.

All examples that follow will use MF4 for simplicity.

Example 1:	 Make a SmartMotor follow an external encoder 1:1 at full quadrature:

MF4		 ' That’s it. Nothing else to do.

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 27

SmartMotor™ Controller Overview

MFR, MFMUL, MFDIV (Mode Follow with Ratio)

Mode follow with ratio allows the user to define the number of internal counts the motor will move for any given external encode count
change.

Minimum Requirements for a move to occur in Mode Follow with ratio:

Phase A and B of external encoder must be wired into ports A and B.•	
The External encode must be powered up and be 5VTTL compatible.•	
MF1, MF2, or MF4 must be issued if encoder ports have been re-assigned from default•	
MFMUL must be pre-defined		 (Mode follow multiplier)•	
MFDIV must be pre-defined		 (Mode follow divisor)•	
MFR must be issued		 (Mode Follow Ratio)•	
G must be issued for the ratio to take effect•	

Example 1: 	 Simple Mode follow ratio

Suppose you have a belt conveyor with a 500 base line encoder on it and you want to match speed with a SmartMotor. It turns out that
for every 73 (post quadrature) encoder counts of the conveyor, you want the SmartMotor to go 11 counts.

You must first set a basic mode follow resolution.
Then you must set a specific ratio for your application.
Then you need to initiate it with a G (Go)

MF4		 ' set motor to full quadrature mode follow (4 times base at 1:1)
MFMUL=11	 ' set Mode Follow multiplier to 11
MFDIV=73	 ' set Mode Follow Divisor to 73
MFR		 ' set motor to Ratio Mode
G		 ' Go (Initiate the above ratio values)

Note: The motor will actually start moving at the point the MF4 command is seen. The actual ratio does not take effect
until the G is received.

If Ports A and B have not been used for anything else, MF4 may be omitted. If MF1, or MF2 is desired, they must be issued prior
to MFR.

Example 2: 	 On the Fly change to ratio

MF4		 ' set motor to full quadrature mode follow (4 times base at 1:1)
MFMUL=11	 ' set Mode Follow multiplier to 11
MFDIV=73	 ' set Mode Follow Divisor to 73
MFR		 ' set motor to Ratio Mode
G		 ' Go (Initiate the above ratio values)
WAIT=40000	 ' wait about 10 seconds
MFMUL= 22	 ' change multiplier
MFR
G		 ' initiate new ratio after 10 second of running at the older one

This is the same as the previous example but with a change added once the motor is already in Mode follow. The values of MFMUL and
MFDIV can be derived from serial data, internal math expressions or Analog values.

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 28

SmartMotor™ Controller Overview

Phase Offset Adjust in Mode Follow

It may be necessary to actually move the motor forward or backwards in real time over top of being in mode follow. For instance, you may
have 2 conveyors matched in speed, but one is slightly behind the other positionally.

You can set a speed and a differential move to allow the one in Mode Follow to "catch up" with the other. this is done with the D (Differential
Move) command and the V (Velocity) command.

Example:

Lets say this code was used to set up the ratio and start tracking a conveyor:

MF4		 ' set motor to full quadrature mode follow (4 times base at 1:1)
MFMUL=11	 ' set Mode Follow multiplier to 11
MFDIV=73	 ' set Mode Follow Divisor to 73
MFR		 ' set motor to Ratio Mode
G		 ' Go (Initiate the above ratio values)

It is realized that after the motor is up to speed. it is about 4000 encoder counts behind whee it although be although it is going the right
speed.

The following code will adjust its position or phase on the fly:

V=100000	 ' set velocity to 100000
D=4000		 ' set acceleration to 1000
G		 ' Go (Start moving)

In this example, the SmartMotor will begin moving forward at a differential velocity of 100000 and stop 4000 counts further up. Differential
velocity means the virtual speed difference between the master (External) encoder and the motor’s internal encoder.

Mode Step (Receive Pulse and Direction Inputs)

	 MS, MS0, RCTR	 Standard Mode Step

Mode Step allows an external pulse train to be used as a command reference to position. It is an extension of Position mode to some
degree in that it operated on a continuously updating commanded position in absolute position mode. It makes use of Port A for Step input
and Port B for Direction Input.

Minimum Requirements for a move to occur in Mode Follow:

MS must be issued•	
Port A must have a step pulse applied•	

Port B is used to determine which direction the motor will turn. If it is at +5VDC the motor wil turn clockwise. If it is at Zero volts, the motor
will turn counter-clockwise.

MS0 can be used to zero out the external counter register.
RCTR as in mode follow, can be used to report the external counter register.

Example:

MS	 'initiate Mode step.

That’s it.
The SmartMotor will now move 1 encoder count for very pulse received on port A.
To change it’ direction, Port B can be changed from +5VDCot zero or vice versa.

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 29

SmartMotor™ Controller Overview

MSR, MFMUL, MFDIV	 Step Mode with Ratio

Mode Step with ratio allows the user to define the number of internal counts the motor will move for any given external encode count
change.

Minimum Requirements for a move to occur in Mode Follow with ratio:

MS must be issued•	
MFMUL must be pre-defined		 (Mode follow multiplier)•	
MFDIV must be pre-defined		 (Mode follow divisor)•	
MSR must be issued			 (Mode Step Ratio)•	
G must be issued for the ratio to take effect•	

Example:

Suppose you want the motor to move 7 counts for every 39 pulses from an external source:

MS		 ' set motor to mode step
MFMUL=7	 ' set Mode Follow multiplier to 7
MFDIV=39	 ' set Mode Follow Divisor to 39
MSR		 ' set motor to Ratio Mode
G		 ' Go (Initiate the above ratio values)

The Motor will now follow the pulse train at a ratio of 7:39 of internal to external counts.

Mode CAM (Electronic Camming)

Electronic Camming provides a means to produce cyclical motion such as found in conventional; mechanical cams. In a mechanical cam,
rotation of a major axis provides a pre-defined motion off of a CAM follower or secondary axis.

This is the case with CAM mode in a SmartMotor as well. The main axis or master axis is an external encoder signal from another source.
The SmartMotor then follows point table values to move to pre-defined positions while following the external encoder. Up to 100 positions
can be defined. The positions are stored in byte sized (16 bit) array variables aw[0] through aw[99].

CAM Mode is similar to Mode Follow. In fact, the same minimum requirements must be met for Mode Follow as well as some additional
requirements for defining how the CAM table will operate.

Minimum Requirements for a CAM Mode:

Phase A and B of external encoder must be wired into ports A and B.•	
The External encode must be powered up and be 5VTTL compatible.•	
MF1, MF2, or MF4 must be issued•	
BASE must be defined	 (Master Encoder cycle)•	
SIZE must be defined		 (Number of points in CAM table)•	
A Pre-defined CAM table must contain valid position data•	
MC, MC2, MC4, or MC8 command must be issued•	
G must be issued for the ratio to take effect•	

Note: SmartMotors use a 32-bit position register.

CAM array values are 16 bit. MC1, MC2, MC4, and MC8 are means of stretching 16 bit data as needed to fill the need for full 32 bit
distances.

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 30

SmartMotor™ Controller Overview

Definitions:

MC	 uses array values directly as positional data

MC2	 multiplies array values by 2 to get position data

MC4 	 multiplies array values by 4

MC8 	 multiplies array values by 8

BASE 	 total number of master encoder counts to get through the entire CAM table. This is the number of encoder counts the external
or master encoder travels for the slave to compete it’s cycle.

SIZE	 number of points in the CAM table

The motor takes BASE and divides it by SIZE to get point to point linear gearing data as in MODE Follow ratio. It then moves seamlessly
from point to point in the CAM table as the master encoder signal changes.

Example: CAM Mode Press machine

Suppose you have a servo operated vertical press that must come down and stamp a product every 22 inches as it travels under the
press on a conveyor. The press travel is 4500 counts from raised position to full down stroke. The conveyor is equipped with an encoder
that puts out 80300 encoder counts every 22 inches.

You could then define a CAM table that has the following array data in it:

aw[0] 0 1000 2000 3000 4000 4500 4000 3000 2000 1000 0.

This is the same as aw[0]=0, aw[1]=1000, aw[2]=2000………through aw[11]=0
This example uses 11 points in the table, so SIZE=11
The conveyor distance defines the BASE, BASE=80300.

Now, from this data we can set up our CAM mode to free rum and stamp the product continuously.

		 ' Define CAM table points into array variables
aw[0] 0 1000 2000 3000 4000 4500 4000 3000 2000 1000 0.
MF4		 ' set motor to full quadrature mode follow
BASE=80300 	' number of encoder counts of master per cam cycle.
SIZE=11	 ' number of points to look for in array variables aw[0-99]
MC		 ' set motor to CAM Mode
G		 ' Go (Initiate the above ratio values)

Let’s see what will happen:

BASE/SIZE=80300/11=7300

Suppose the master encoder and the SmartMotor are both at zero:

as the master encoder starts to move from 0 to 7300 counts, the SmartMotor will linearly move from 0 to 1000 counts (1000 is the second
point in the CAM table)

The SmartMotor will reach 1000 at the same time the master encoder reaches 7300.

As the Master encoder moves to 7300+7300 (14600), the SmartMotor will linearly move from 1000 to 2000. This same linear interpolation
occurs throughout the entire CAM cycle. The SmartMotor will move to 4500 counts and back to zero for every 80300 counts of the master
encoder cycle.

Note: CAM Mode table data must always start with zero. The last data pint does not have to be zero, but can generate an instantaneous
position error that may exceed error setting. So be careful to create gradual CAM points so as to not cause position errors.

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 31

Motion Commands summary (Not inclusive in or necessarily covered in above sections)	

A	 Purpose			 sets acceleration (also deceleration)
	 Syntax			 A=##
	 Units			 Encoder samples/sec/sec
	 Range			 32 bit signed value
	 Example			 A=700				
	 Default	 value		 0 	
	 (Typical values are from 100 to 3000. 3000 is very fast.

D	 Purpose			 sets relative move distance
	 Syntax			 D=##
	 Units			 Encoder counts
	 Range			 32 bit signed value
	 Example			 D=4321	 		
	 Default	 value		 0

E	 Purpose			 sets maximum position error allowed (exceeding causes a fault
	 Syntax			 E=##

	 Units			 Encoder counts
	 Range			 32 bit signed value
	 Example			 E=300	 		
	 Default	 value		 1000

G	 Purpose			 Initiates moves as well as various modes of operation
	 Example			 G			

I	 Purpose			 Holds Encoder Index Position
	 Syntax			 RI	 (Reports location of Index pulse)
	 Units			 Encoder counts
	 Range			 32 bit signed value

	 Note: RI clears "Index-Report-Available" (Bi) Status bit as well.

O	 Purpose			 sets motor encoder counter to desired value
	 Syntax			 O=##
	 Units			 Encoder counts
	 Range			 32 bit signed value
	 Example			 O=250	 	

OFF	 Purpose			 Disables Drive Amp
	 Syntax			 OFF

P	 Purpose			 sets Absolute commanded position
	 Syntax			 P=##
	 Units			 Encoder counts

Range				 32 bit signed value
	 Example			 P=20000			

S	 Purpose			 Stops Motor at maximum capable speed
	 Syntax			 S

SmartMotor™ Controller Overview

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 32

SmartMotor™ Controller Overview

T	 Purpose			 sets commanded torque for Torque Mode
	 Syntax			 T=##
	 Units			 None
	 Range			 10 bit signed value (+/- 1023
	 Example			 T=512	 	 (Sets motor to 50% full torque)			
	 Default	 value		 0

V	 Purpose			 sets maximum commanded velocity
	 Syntax			 V=##
	 Units			 Encoder samples/sec
	 Range			 32 bit signed value
	 Example			 V=180000				
	 Default	 value		 0 	
	 (Typical values are from 100 to 2000000)

X	 Purpose			 Stops Motor at rate of acceleration equal to A
	 Syntax			 X
	

@P	 Purpose			 Holds Current real-time motor position
	 Syntax			 R@P	 (Reports present position)
	 Units			 Encoder counts
	 Range			 32 bit signed value
	 Example:		
	 IF @P>4000
		 PRINT("Motor Position is greater than 4000",#13)
	 ENDIF

@V	 Purpose		 Holds Current Motor Velocity
	 Syntax			 R@V	 (Reports present speed)
	 Units			 Encoder samples/sec
	 Range			 32 bit signed value
	 Example
	 IF @V<100000
		 PRINT("Speed fell below 1000000",#13)
	 ENDIF

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 33

SmartMotor™ Controller Overview

SmartMotor I/O Control at a Glance
There are seven I/O channels available on a Smart Motor.

They can be assigned as either Inputs, Outputs, or 10 Bit analog inputs individually.

Note: At any time, regardless of usage, the ports may be read as an analog value.

I/O Port Hardware

Each I/O point has a 100 Ohm series current
limit resistor with a 5Kohm pull-up
Each has a 5.6VDC Zener diode as well.
Each can sink 15mA and source 4mA

NOTE: They are not open collector P or N type outputs! They are Totem Pole CMOS driven outputs. When assigned as
outputs they drive hard to either 5VDC or Ground when set to a 1 or 0 respectively

It is possible to use an Open Collector NPN type 24VDC prox with the SmartMotors.

The Use of PNP sourcing type 24VDC prox switches will damage the SmartMotor!

Dry contacts, if used, should be wired from the port pin to ground. If you wire them from the port pin to 5VDC, the pull up resistor will cause
you to always see a logic 1 on the port.

Software Control of I/O Ports

This is an overview of SmartMotor Code to control the on-board I/O:
In each case, X denotes any port A through G and should be replaced with the port letter to be used.

Reading a Port as an Input:

UXI	 : 	 defines port "X" as an input port; X is any port A-F

Example:	 UAI would define port "A" as an input port.

Assigning Port status to a variable:

x=UXI	 : assign the variable "x" the value at port "X".
: x will equal "1" if the port is at 5VDC.
: x will equal "0" if the port is at 0VDC.
: x can be any variable a-z, aa-zz, aaa-zzz..

Example:	 y=UAI would assign the logic state of port A to the variable y.

Reading a Port as an Analog value:

x=UXA : assigns the variable "x" a 10 Bit analog value from 0 to 1023 where 0 VDC=0 and 5VDC=1023

This command reads the selected port via a 10BIT A/D converter.

Example:	 z=UBA would assign the 10-Bit analog value of port B to the variable z.

Note: This is useful for self-diagnostics. By placing a known voltage dropping resistor on an external switch or other device,
you can use the port as a general input, and yet do an analog read to check if the switch or sensor wire may have become
disconnected from the port.

SmartMotor
Internal Port Schematic

Any Port
Pin 100Ω

5VDC

To CPU

5.6 V

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 34

SmartMotor™ Controller Overview

Assigning a Port as an Output:

UXO	 : defines port "X" as output port

Example:	 UEO would assign port B as an output.

UX=1	 : drives voltage on port "X" to 5 VDC

Example:	 UE=1 would set port E to 5VDC.

UX=0	 : drives voltage on port "X" to 0 VDC

Example:	 UE=0 would set port E to 0VDC.

Note: You can pre-define the state of a port prior to assigning it as an output. Then you can toggle it between input and output
to change from a driven state to a floating state. This is useful when tying I/O together between different SmartMotors.

Default States and special uses of I/O ports

Ports A and B Defaults and Specifics:

Ports A and B as quadrature encoder inputs:

Default state: Ports A and B default to phase A and B Encoder Inputs. If no Port Control commands have been issued to Ports
A or B, at any time, you can use the CTR command to get counter values from these ports:

Example:	 RCTR would report counter status from ports A and B	

	 x=CTR would assign the counter value to the variable x

	 MF0 would re-set the counter to zero. (Mode Follow Zero)

Using MF1, MF2, MF4 or MFR will allow you to make use of ports A & B as quadrature encoder input ports and place the Motors
into Electronic gearing or Mode Follow.

See Help files or manual for more.

Ports A and B as Step and Direction inputs:

The MSO command re-sets the counter to zero and sets up Ports A and B as Step and Direction inputs respectively. Once doing
so, the same rules apply as listed above for the RCTR and CTR commands.

Setting up the motor as a stepper via MS, MS0, or MSR command will make port A be a step input and port B a direction input
as well.

See Help files or manual for more.

Note: MS0 command is a good way of using port A as a high speed counter It zeros the Counter without changing the motor’s
mode of operation. From that point on, RCTR can report counts from prox switches, laser scanners etc.. as a high speed
counter.

Ports C and D Defaults and Specifics:

Ports C and D default to right and left limit inputs respectively. If they are assigned as input or output ports, they must be
redefined as limit switch inputs if you want them to be used as such. To redefine them as limit inputs you do the following:

Example:	 UCP	 'redefines port "C" as right limit input (P for plus rotation)

	 UDM	 'redefines port "D" as left limit input (M for minus rotation)

Note: BRKC Command has been added in later V4.15 and >=Versions 4.76 firmware. This allows Port C to control and
External brake via brake control commands. See also: BRKSRV, BRKTRJ, BRKENG, BRKRLS and the V4.76 Firmware
document for more details.

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 35

Default States and special uses of I/O ports (Continued)

Ports E and F Defaults and Specifics:

Ports E and F can be used as the Anilink port or an RS-485 port. Any command used for communication to Anilink devices will
automatically set the ports as needed for Address and Data information. Using the OCHN and OCHR commands with regards
to RS-485 usage will automatically set the ports to half duplex RS-485 operation.

See Help files or manual for more.

Ports G Defaults and Specifics:

By Default, when port G sees a transition from 5 to zero volts, it means the same as typing a "G" and pressing enter or seeing
a G in a program. This is why it is called the G Sync pin. This allows you to synchronize "goes" on multiple motors at the same
time. The G Port can be redefined as general I/O like the other ports.

UG : command returns Port "G" to default sync port so if you assigned it as an input or output, To redefine it as "G sync" simply
invoke the UG command again.

Port G also has the option of being used as a handshake line for RS-232 to RS-485 Adapters. This is covered in the Help Files
and manual under communications.

Note: BRKG Command has been added in later V4.15 and >=Versions 4.76 firmware. This allows Port G to control and External
brake via brake control commands.

See also: BRKSRV, BRKTRJ, BRKENG, BRKRLS and the V4.76 Firmware document for more details.

I/O Programming examples
The following are examples of triggering events off of Port I/O state changes.

Level Triggered Subroutine call

This code causes subroutine 100 to be called when port A goes high

IF UAI==1
	 GOSUB100	
ENDIF

Positive-Edge-Triggered Subroutine Call

This code causes subroutine 100 to be called when port A goes high only after first going low (negative pulse triggered subroutine call)

IF UAI==0
	 WHILE UAI==0
	 LOOP
	 GOSUB100
ENDIF

SmartMotor™ Controller Overview

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 36

SmartMotor™ Controller Overview

Default States and special uses of I/O ports (Continued)

Negative-Edge Triggered Subroutine Call

This code causes subroutine 100 to be called when port A goes low only after first going high (positive pulse triggered subroutine call)

IF UAI==1
	 WHILE UAI==1
	 LOOP
	 GOSUB100
ENDIF

Level and State Change Print-Out example

WHILE 1==1		 'while forever
	 WHILE UBI==1 LOOP	 'while port B is high, do nothing
	 PRINT("Port B just went Low",#13)
	 PRINT("Do nothing while it is Low",#13)
WHILE UBI==0 LOOP	 'while port B is low, do nothing
	 PRINT("Port B just went High",#13)
	 PRINT("Do nothing while it is High",#13)
LOOP

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 37

"F=#" Function Command Overview

The F command value allows Enabling or Disabling of special firmware functions of the SmartMotor Processor

and Drive Stage.

Syntax: F=value

The Value is a Binary Bit weighted value with each bit controlling a specific feature.

Bit Value Functions are as follows:

1	 Decelerate to stop on limit switch input (as opposed to just turning off)

2 *	 Invert Commutation (Changes Shaft rotation)

4	 Any Report commands transmit to Com 1 only. (Use with Extreme Caution)

8	 Clear PID integral term at trajectory-end to avoid possible slow settling

16 *	 Mode Cam positions are relative for each re-entry into CAM table (from either direction)

32 *	 GOSUB1 is issued under motor fault condition
	 C1 can not be called again prior to receiving a RETURNF

64 * 	 GOSUB2 is issued on user input G transition from high to low
	 C2 can not be called again prior to receiving a RETURNI

128 *	 Internal Slave Counter = base + dwell modulo while in CAM Mode

256 *	 Set T.O.B. to be active for entire move profile.

512 *	 Suppress T.O.B. until Slew Velocity has been reached

1024 *	 Enables Port G to Index trigger latch function (only in SM2316D/DT >=4.93 firmware)

* Note: Only Applies to >=v4.77 only……..

Warning: C1 has priority over C2. C1 can be activated when in C2.

The F value can be changed on the fly while in an Interrupt subroutine to change its effect. An example would be turning off the G
interrupt once in C2 to prevent any subsequent calls.

F Command is Binary Bit flag additive:

Example:

F=21 would break down to F=(16+4+1).

Motor would run CAM Mode relative, redirect print statements to port 1, and decelerate on limits.

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 38

"F=#" Function Command Overview

Example using F=32 for Interrupt driven Fault routine

F=32		 'Enable C1 Fault routine

MV		 'Set to Velocity Mode
V=10000	 'Set Speed
A=100 		 'Set Acceleration
G		 'Start moving in Velocity Mode

END

C1				 ' Fault Routine (Gets called on any of the following faults)
	 IF Be			 ' Checking for error status bits
		 PRINT("Position Error",#13)	
	 ENDIF	
	 IF Bh	
		 PRINT("Over Temp Error",#13)	
	 ENDIF	
	 IF Bi	
		 PRINT("Over Current Error",#13)	
	 ENDIF	
	 IF Bl	
		 PRINT("Left/Positive Travel Limit Error",#13)	
	 ENDIF	
	 IF Br	
		 PRINT("Right/Negative Travel Limit Error",#13)	
	 ENDIF	
	 WHILE 1		 'Wait for Motor Reset
		 IF r==1	 'If host sends r=1 via serial port
			 ZS	 'Reset the motor
		 ENDIF
		 IF UAI==0	 'If Input A gets rounded
			 ZS	 'Reset the motor
		 ENDIF
	 LOOP
RETURNF	 		 'Return form Fault routine

Example using F=64 for Port G, C2 interrupt subroutine call

F=64		 'Enable Port G interrupt routine
END
C2		 ' Port G interrupt Routine
	 PRINT("Port G was grounded",#13)
RETURNI 	 ' Return from Input Trigger

Example using F=64 for C2 subroutine call and F=1024 Index Re-direct for position capture

F=64		 'Enable Port G interrupt routine
END
C2		 ' Port G interrupt Routine
	 PRINT("Port G was grounded",#13)
RETURNI 	 ' Return from Input Trigger

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 39

Special Function and Special Cases

1. Serial Buffer command: ! YES….., "!"…… is a command……
This command halts subsequent code execution until ANYTHING is received into the serial port. It can be used as an effective means
to detect electrical noise on the communications cables.

Example:

WHILE 1	 'while forever
	 !	 'wait here for any incoming serial data
	 PRINT("noise",#13)

LOOP

2. Break Control Commands: (means to control internal break option)

BRKSRV (Default State) This command causes the break to mechanically engage on any protective fault.

This includes: Position Error, Over Temp, and Travel Limits.

BRKTRJ (Optional State) This command will cause automatically Disengage and re-engage of break upon any commanded shaft motion.
It DIRECTLY follows the Bt (Busy Trajectory) Status Bit. If Bt is 1, then the break gets power and is mechanically disengaged. If Bt is a
zero the Break loses power and is re-engaged Proper delays have been included in firmware to allow for mechanical response time.

NOTE: When BRKTRJ is issued, the motor drive stage will turn off (or be off) any time the Bt bit clears. The LED that would normally
follow the Bo bit would be Red any time the Bt bit is zero, and yet the Bo bit will still be zero as well. This is crucial to know when writing
error detection code.

BRKI 	 (Default State) Directs Break Control signal to optional internal Break
BRKC 	 Redirect Break control signals to Port C pin.
BRKG 	 Redirect Break Control signals to Port G pin

Note 1.: in both cases, the I/O pin is at ground level when the break should be powered up and mechanically disengaged.

Note2. : These commands are useful for automatic "busy" signal to PLC’s.

3. MF0 and MS0.
Both commands can be issued without causing motion or changed mode of operation.
MF0: Sets up Port A and B to read external encoder signal at 4X interpolation.
MS0: Sets up Port A for Pulse (or Step) input and Port B for Direction Input

In both cases, CTR (External Counter Register) will be set to Zero
To read CTRE, issue RTCR at any time.

MS0 is good to using Port a as a high speed counter. It can read signals at up to 2MegaHerts rate.

Note: If it is desired to initiate Mode Follow or Mode Step with MFR (Mode Follow Raito) or MSR (Mode Step Ratio), the use of
MF0 or MS0 is the only means to enter without first causing a mode change prior to "G" command.

4. UG (Default state control of Port G Input pin).
By Default, at any time Port G pin is grounded, this is the same as issuing the "G" command. On rare occasions, this default state can
cause accidental motion or changes in Modes of Operation. This can occur when a long cable is connected to the Port G pin but not
terminated to 5VDC or ground.

If the pin is grounded on power-up, the motor will immediately turn on the drive stage and hold position.
To turn off this "G" function, issue UGI or UGO to assign the I/O pin as needed.
At any time, UG can be entered to enable "G" command functionality.

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 40

Special Function and Special Cases

5. PID1, PID2, PID4, PID8 commands.
Each of these commands control the rate at which the CPU updated the PID Positional Control Loop.

PID1 is the default state. This means every servo-sample (every ~250 microseconds) the processor compares calculated
trajectory position with actual real-time position, calculated the error and sends updated PWM commanded to the drive stage to
provide proper force at the shaft.

PID2, PID4, and PID8 will lower the update rate to every 2, 4, or 8 servo sample periods respectively allowing for more Code and
Communications execution time.

NOTE: PID commands DIRCTLY change the effects of V (Velocity), A (Acceleration), and PID "K" values.
This PID commands are best utilized when faster I/O control is needed (WHILE NOT MOVING). Otherwise, proper V, A ,
and KP, KI, KD changes must also be made when changing PID settings.

6. KG parameter. (Gravitational PID term)
This term DOES NOT require the now obsolete KGON and KGOFF commands. The KG command applies a net offset to the
operating PID filter to compensate for vertical load or continuous offset load in one direction only.
It can be used to shift position error to zero as well.

NOTE: KG parameter is a 32 bit parameter and may not show ANY effect until values well above +/-1 million are used. As
with other PID values, the "F" command must be issued for it to take effect.

7. ENC0 (Default) and ENC1 (Optional) commands
These commands tell the processor which encoder to use when calculating PID and PWM trajectory control. ENC0 is default and
utilizes the internal encoder. ENC1 causes the processor to look at Port a and B for external encoder input.

NOTE: External Encoder Resolution directly effects PID effectiveness.

Example: Suppose internal encoder resolution fo 2000 counts/shaft revolution. Then you add an external encoder that
has an effective resolution of 4000 counts/shaft revolution for the same distance traveled. Then you have effectively
doubled ALL PID parameters. In other words, when ENC1 is issued, this will also have the effect of Setting KP to KP*2
and KI to KI*2 etc……

8. D command.
This command is normally only thought of as a relatively position move command. Under Normal operation in MP (Position Mode)
a non-zero value of D with a subsequent "g" command results in a relative distance move from where ever the motor shaft is to
"D" encoder counts from there.

HOEWEVER: The "D" command is also used for Phase Offset moves while in Mode Follow or Mode Step. As a result, if you were
to use MFR (Mode Follow Ratio) or MSR (Mode Step Ratio), Both require a "G" command to initiate the ratio. If "D" is not zero (for
example 2000), then immediately upon issuing the "g" command after either MFR or MSR, the motor shaft will move forward 2000
counts.

The "D" command is also used for "Dwell" in CAM mode in the "PLS" firmware. Consult the PLS firmware addendum on the web
for more information on this specifically. To be safe, "D" should be set to Zero at all times when not specifically needed.

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 41

9. Bs Status Bit, (Syntax Error Bit) also known as the Bull$H1T command……
At any time there exists more than one motor on a Serial bus (RS-232 or RS-485), the Bs status bit may be set to 1. The reason for this
is quite simple. It is set ot one any time a motor in the "addressed" state (meaning it is accepting and processing all incoming commands)
receives a character string that I s not a valid command string.

Example: You send the command RP to motor 1. It responds with 1234 Well, Motor 2 or any other motor downstream on the
serial chain will get "1234" and will know it is just numbers and not a valid command. Therefore the Bs bit will be set to 1. This
is very common any time global address commands are sent to motors.

10. OFF command and Bo (Motor Off Status bit).

The OFF command simply sets the drive stage to an OFF condition.

Note: In all firmware, the Bo bit will immediately be set to "1". In ALL PLS firmware motors (4.62 (servo step) and >=4.76 (SmartMotor
series), the motor will be placedin MTB (Mode Torque Break.) The result is this: In non-PLS firmware, the motor will freewheel and the
shaft will turn freely.

On all PLS firmware motors, the motor windings will be shorted out. So the OFF command can result in quick stops.
The Bo bit ONLY gives the state of the drive, NOT what the processor thinks caused the "OFF" condition.

Example: On Power-up, the Bo bit will be "1" prior to any subsequent motion commands. The LED on the motor will be Red.
This does NOT mean the motor is in a faulted state. It simply means the motor is OFF.

11. RUN?
This command does not prevent the motor from running code upon power-up. It prevents the motor from running code beyond the RUN
command on power-up.

Example:

PRINT("Hello World",#13)
RUN?
PRINT("Hello Again",#13)
END

Upon Power-up the motor WILL print "Hello World", but WILL NOT print "Hello Again", until "RUN" is issued via serial port.

12. SILENT, SILENT1
These command prevent PRINT commands from printing to their respective ports. They do not work when sent form the serial port.
They only work when in the downloaded program.

13. VLD and VST,
These commands are used for EPROM read and writes. They cannot break the pre=assigned variable sets.

Example:

EPTR=100
VLD(a,26)	 'loads values starting from 100 to all variables a though z.
EPTR=100
VLD(a,27)	 'Invalid because it breaches the "z" variable.
EPTR=100
VLD(ww,10)	 'Invalid because it breaches the "zz" variable.

The same riles above apply to VST command as well.

Special Function and Special Cases

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 42

Special Function and Special Cases

14. RETURNF, RETURNI (PLS firmware only)
RETURNF is the proper form of RETURN used at the end of C1 subroutine user code when C1 is called on interrupt when a protective
fault occurs.
	 (Note: F=32 bit flag must be set to enable C1 to be called).
RETURNI is the proper form of RETURN used at the end of C2 subroutine user code when C2 is called on interrupt due to Port G being
grounded.
	 (Note: F=64 bit flag must be set to enable C2 to be called)

If it is desired to call C1 or C2 manually (or via code) by use of GOSUB1 or GOSUB2, then a regular "RETURN" command must exist
somewhere below C1 or C2 to avoid a memory mapping error or undesired program flow.

15. MTB (Mode Torque Break)
This command immediately causes the motor winding to short out. No "G" command is required.
Care should be take when it is used. The stopping force of the motor using MTB is >60% better than in any other mode of operation or
any deceleration. The motor uses no power from the external power supply to stop the shaft. It only uses dynamic Back-EMF to stop
shaft rotation. This does not mean that a "Z" axis can be used without a fail safe mechanical break..

16. TH and THD commands and the Bh Status Bit
The TH command sets the temperature trip point to a value LOWER than default.
The normal setting is 70 for a trip point of 70Deg.C (or 85Deg.C on optional motors).
The TH command ONLY further limits operating conditions of the motors.

The Bh (Over temp) status bit will be set to 1 if the TH command setting is exceeded.
The motor must drop 5 Degrees below the TH set point before continued operation is allowed. This setting is in firmware and cannot be
altered.
Example: If TH is set to 55, then the motor must cool to 50Deg C before the CPU will allow the motor to operate again.

The Bh Bit is ALSO the RMS over-current bit. The reason for this is that both RMS Over-current and Over Temp are effectively heat-
generated failure conditions.
The Bh bit will be set any time the RMS over current setting (factory set per motor drive) is exceeded for a a time set by THD. The
Default value for THD is 12000. This is approximately 3 seconds.
The time can be increased or decreased. To increase it can cause sustained RMS over currents long enough to possibly damage the
motor.
It is not recommended to increase THD.

17. AMPS command. (Defaults to 1000)
This command sets a limit to the maximum % PWM available to the drive Stage.
Valid values are from 0 to 1023 representing 0 to 100% PWM.
NOTE: The AMPS command DOES NOT LIMIT PEAK POWER, ONLY RMS POWER.
The scope of the full physics behind this is beyond the intension of this document.

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 43

18. STACK
The Stack Command clears ll return-memory pointers from anyh WHILE LOOP or GOSUB call that had been previously stored. Only a
maximum of 7 pointers can be stored. This means the motor program code cannot be "nested" more than 7 levels deep or have more
than 7 recursive calls.
Example:

WHILE 1
	 WHILE 1
		 WHILE 1
			 WHILE 1 etc… 7 levels deep.

The STACK command should be used with care. It is recommended that it only be used if followed by a GOTO command back to some
higher place in code if not the very beginning.

19. X and S commands
When the X or S commands are issued, the motors will decelerate to a stop from their present trajectory calculated speed. This
calculated speed has a high granularity fo measurement. It is on the order of 2^16 or ~65000 in Velocity units. As a result, it may be that
issuing an X or S command while moving very slowly, could cause a jump in speed and on rare occasions a reversal in direction. The
firmware has been adjusted as of late 2004 to minimize the effect, but cadre should be taken if very slow speeds or high fluctuations in
position error are expected.

Recall, the X command decelerates at the value determined by A" (Acceleration. The S command deceleration rate is at a high value of
around A=8000 or so. So it is possible that the X command can decelerate faster than the S command.

High values of "A" in conjunction with the X command can result in the Ba (peak over current) status bit being set. If sustained long
enough, the motor may get a position error.

20. Ba (Peak Over Current) Status Bit.
This bit indicated a change to active operational drive stage control. When the Ba Bit is reached, this indicated the drive stage has
reached saturation. It DOES NOT indicate that the motor has faulted or that it will fault.
When the Drive stage reaches saturation as detected by the internal current-sense resistor, the processor sets PWM to 30% ntil the
current sense resistor shows the current demand drop off.
Motion will continue through this and the motor may complete the more without any noticeable effect.

What may be seen is a slight Yellow glow the the LED or possibly completely Red for a moment.

If the motor load is high enough such that the Peak over current condition persists, then the motor will begin to fall behind at a faster
rate. If it falls behind far enough to exceed "E" (maximum allowed following error), then the motor will in fact fault on Position Error (Be).
But the Ba bit would not have been the physical reason for the fault.

If a given application results in multiple instances of the Ba bit being set, this indicated that the motor may be undersized in the Peak
range.

If the motor has no attributable heat build-up, then it indicates ONLY pe4ak over loading, not continuous RMS overloading.

Keep in mind, RMS overloading causes heat build-up.

Peak overloading causes instantaneous Ba Bit and 3-% PWM limitation and shows signs of peak over loading.

Special Function and Special Cases

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 44

Special Function and Special Cases

21. LOAD and RCKS command.
The LOAD command causes the motor to go into EEPROM Program Write Mode. Once the command is issued, all subsequent data
is written directly into Program EPROM. This will continue until 2 (two) HexFF bytes are sent to tell the CPU the download process has
ended.
Normally, this is done from a PC or the SMI software or possibly a PLC. The data that is sent should be a valid .sms compiled program
for the SMI software.
Note: The LOAD command should NEVER be issued manually at any time in any terminal screen.

After a download is complete, the SMI software automatically issues the RCKS command. This command reports the Checksum for the
downloaded program to insure the download was successful.

Of the motor processor calculates a matching checksum to the checksum in the downloaded program header file, then the checksum will
be followed with a "P" for passed. Otherwise it will be followed with an "F" for failed.

Any time RCKS returns a number followed by "F", then the motor program uis corrupt and should be cleared form EEPROM by downloading
again.

Any .smx compiled program should not be opened in Word or Notepad. Doing so will corrupt the files because Microsoft will insert line
ends and line feeds to all lines in the smx file resulting in syntax errors throughout the entire program. If it is desired to store an smx file
in a PLC, then the file must be downloaded to the PLC as is.

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 45

System Design Techniques to Aid in Motor Protection

Selecting Power Supplies: Switching, Linear, and Unregulated Power Supplies:
Switching Regulator Power Supplies are the most common, most compact and now becoming the most economical power supplies. A
"Switcher" or Switch Mode Power Supply typically takes incoming high voltage AC power, Rectifies it to High Voltage DC power and then
through a Voltage-Mode PWM control, will deliver a much lower DC voltage to loads. Some are referred to as "PFC" switcher meaning
they are "Power Factor Corrected". Without going into detail, this means basically a few things:

They can take in a very wide range of AC voltage, typically 100 to 240VAC,1.	
They will correct for impedance shifts from "real" to "reactive" power giving a more unity power factor as is seen from the AC 2.	
side.
As a result of the above, they will also reflect load changes back to the AC side.3.	

Most switchers will go into an OFF state on over voltage. Few of them have a buck-regulator that prevents over voltage. The ones that
do are very costly and large. As a result of this it is highly recommended to use a Shunt when using a switching power supply to aid in
suppression of bus over voltage. Switching Power supplies should be sized to provide maximum expected current for the entire motor
system under the worst load considerations. This is because Switchers have no "reserve" like Linear Power Supplies do.

When they reach maximum current, they shut down or reset. If a Switcher is rated for 10 Amps, for example then if the load exceeds 10
Amps, it will shot down. However, the voltage does not drop down at all from no load to full load. As a result, a well sized switcher works
well when an application requires very high speeds (no voltage losses) or extremely fast accel/decal times. As long as the peak current of
the motor does not exceed that of the continuous rating of the switcher, then a switcher will work well with servo motors.

Linear Regulated Power Supplies are becoming less common. Unlike switchers, they must be used at a proper fixed input voltage. They
do have a reserve current capacity but as load increases, their voltage drops while current goes up. They still maintain a fairly good control
over voltage regulation though. As a result, they have little fluctuation in current or voltage. They are good for consistent continuous duty
applications that have only small changes in load. Constant conveyor feed, mixers, pumps and similar applications work well when run
by regulated linear supplies.

Unregulated Power Supplies are typically brute-force open frame transformers with a full wave bridge rectifier and one large Electrolytic
Capacitor. Similar to Linear Regulated supplies, they are designed to run at fixed input AC voltages, however, they are often times
supplied with multiple input taps for a selection of input voltages.

There is no regulation in them. As load goes up, current goes up and voltage goes down. As a result, they can output extremely high
current surges even if at a substantially reduced voltage. When sizing an Unregulated Supply, it is good to know the output voltage at
maximum load. Be sure that this voltage is high enough for the required speed of the servo motor. If so, then an unregulated supply is
the best choice for demanding applications with high load swings and heavy peak loads. It is not uncommon to find reasonably priced
unregulated supplies that can surge >80 Amps short duration. This makes them idea for heavy loads accelerating quickly.

Mechanical Brakes:
If at any time, a load can be easily back driven or is in a vertical orientation, a electromechanical fail-safe brake is highly recommended.
Under no situation should a PLC or external controller be used to control a fail safe brake on a servo. The response time will be
diminished to the point of defeating protection. Instead, use the SmartMotor interrupt control features stated here:

BRKG command in conjunction with the BRKTRJ or BRKSRV commands.

Here is the detail on that:
BRKC 	 'send automatic brake control signal to Port C.

BRKG 	 'send automatic brake control signal to Port G
BRKSRV 	 'Engage brake on any motor shaft fault
(Position Error, Limit Switch Error, Continuous Over Current/Over Temp)
BRKTRJ 	 'Engage brake when not moving
(Follows the Bt "busy trajectory" status bit)

In making use of selected commands from above, the brake will get a signal to engage (be de-energized) within 250 to 500
microseconds of it’s trip condition. Using the PLC will cause a delay of anywhere from 4 to 10 milliseconds due to scan time, process
time and brake release time. By then, current in the control could have already well exceeded limits.

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 46

System Design Techniques to Aid in Motor Protection

Position Error Limits:
Let’s suppose you have a maximum allowable position error limit of 1000 encoder counts: The motor can hit a hard stop and go up to 999
encoder counts into position error before a trip condition is met. The time is takes to get to that position error my be slow or fast depending
on the speed you are moving. Set "E" to lowest value possible to allow continued machine operation without spurious position error faults
occurring. This will provide the most protection both for the equipment and for personal safety.

By lowering the limit to a close margin above normal operating conditions, the motor will fault out quickly upon hitting any unexpected
object (or person) A properly set following error limit can literally save lives.

The best way to set the limit is to run the application under normal operating conditions. Then poll PE (Position Error) live while running.
Note the peak value of position error, typically while accelerating quickly. Then set E to ~5 to 10% above that value. This will give a good
margin for variations in load and friction.

Amplifier Tuning
Lets suppose you have "tight" tuning. KP>300 or so, KD>2000 or so, This is just an example of slightly tight tuning, but not too high. The
higher the numbers, the faster motor current will rise under a given increase in position error. Collectively with the above mentioned facts
about "E" maximum allowed position error, current may rise much faster. It is best to ratio acceptable tuning values with good Position
Error values so as to maintain the lowest running position error with the lowest value of "E" possible,

The ironic thing here is that usually to get Position error down implies increasing tuning. this is true, but for example: KV (Velocity Feed
Forward) and KA (acceleration feed forward) are better means to achieve this. They lower position error while moving without increasing
motor current because they shift the motor position command forward in the trajectory for the entire move, vice during the dynamics of
changes in moves. As a result, you get lower peak currents in the motor. This being the case allows for E to be set lower thereby making
the machine safer and the hardware last longer. As a rule of thumb for present day SmartMotors:

KP is Proportional Gain and defaults to 42 Typical values are from 20 to 500. KP is a gin that command PWM to the drive stage
directly proportional to position error. As Position error increases, KP increase PWM duty cycle proportionally. The higher the
value, the faster the PWM increases for an increase in position error. KP can be considered as Velocity Gain.

KI is Integral gain, It integrates over Position error and is the integral gain for KP. IT is therefore somewhat like Position gain. It
reacts slowly and aids in maintaining position, not speed. When there is high friction in a system and proportional gain is not set
high enough to get a motor into final position, the KI gain will build up PWM over time until the position error is reduced, Then KI
will drift back down until the motor settles into position. As a result, KI can substantially reduce heat in a high friction application
that has any considerable amount of dwell time my reducing dwell time position error to a minimum. Once position error is
reduced to near zero, the drive stage needs very little current. Less current means less heat. If you find a motor to be hot when
sitting still but cooler when running, then KI gain needs to be increased. KI is typically ½ to 1-1/2 times KP.

KD is Differential gain, the differential of KP. Since KP is like velocity gain and the differential of velocity is acceleration, then KD
could be thought of as acceleration gain. KD is a high frequency and fast acting gain. It handles the quick changes in velocities
and deals with surges in demand. Since much higher PWM is needed to accelerate quickly, KD typically needs to be much
higher than KP. Many have heard the rule of thumb that Moment of Inertia Mismatch should be <=10:1. This is because most
servos can accelerate ~10 times faster than gravity and moment of inertia is based on gravitational acceleration. As a result of
this KD is typically set around 10 times the value of KP. KP defaults to 42 and KD defaults to 550. In tight tuning KP may be 250,
and KD would be nest at around 2500 as a result.

Power supply Voltage Levels
The higher the voltage, the fastest the motor can move and the faster it can accelerate. This is a good thing. But in conjunction with
that, the higher the voltage, the closer to a peak voltage for over-voltage break down of the controller. Also, the higher the voltage, the
faster a rate of change of current can occur. It is a risk with any application to get faster response by moving towards a higher voltage.
Typically speaking, it is the dynamics of sudden changes that increases risk by a square function whereas the continuous load risk is
only a direct ratio increase. This is because rate-of-change in current is proportional to acceleration which is the square of velocity, i.e.
V^2.

For safety sake, a 42VDC supply for a 48VDC system gives good margin with little speed losses. In the same manner it must be note:
To move from 24 to 48VDC gives you the ability to go twice as fast. However, the ability to accelerate goes up by a squared increase or
4 times faster.

To repeat this: To double voltage doubles speed and gives 4X acceleration capability. But with this comes the above mentioned
increase in current as well. So be sure the power supplies and motors are sized properly.

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 47

Firmware Options:
Once the motor is purchased, the firmware is already there and cannot be changed. For the sake of added safety, here are some notes
on the newest options: 4.78xx firmware: This newest of the "plus" version firmware options has the ability to suppress back-EMF voltages
any time the calculated trajectory has been exceeded by actual motor motion. In other words, the processor is looking at where it should
be vice where it actually is. Any time the motor exceeds dynamic position per calculated trajectory, the drive amplifier shunts power to
maintain dynamic position control. As a result, excessive currents are suppressed at a rate or response of ~250seconds. (within PID
update rate). The result is faster and higher stopping power and les overshoots in speed. For more on this, consult Trajectory Overshoot
Braking documentations

Back EMF and Hard Stop Crashes
Back EMF is the voltage generated when a rotor is moving within the stator of any motor. It is literally the motor acting a s a generator.
Automatic Shunts should be employed in any system where Back-EMF is likely, such as vertical loads or back-driven loads. There is a
common rule that Back EMF or voltage generated is proportional to Velocity. This is true in a constant velocity condition only. Back EMF
is actually proportional to the rate of change of magnetic flux (magnetic field strength) inside the stator windings of the motor. The faster
the rate of change, the higher the voltage rises. In other words, RPM of the motor shaft does not have to be that high to have very high
voltages created.

Here is an example: Take any relay coil or solenoid valve coil in a 24VDC system. When it is energized, the magnetic field pulls in the
contactor or pilot valve. The magnetic flux reaches saturation and a DC electromagnet is formed. When the power is removed from the
coil, the magnetic flux rapidly collapses because there is no forward voltage to maintain it. Since the circuit is now electrically open, there
is nothing to prevent the magnetic flux from collapsing rapidly at a hyperbolic rate. The result is something called "inductive-kick". This
kick or spike in voltage for a 24VDC coil can reach very high voltages and currents on the order of 100 times that of the original applied
voltage, i.e. 2400VDC!.This is why it is very common to place reverse polarity diodes across relay coils and solenoid valve coils. It protects
the system from high voltage spikes.

The same thing occurs when a motor hits a hard stop. Suddenly, the rate of change of magnetic flux in the stator windings skyrockets
upward because the rotor stopped moving. This sudden change causes an excessive voltage and current spike in the controller and can
damage components.

Now: what can we do about it?
Practically speaking, not much. This is similar to a car crashing in to a brick wall. If the passengers are belted in, they may survive,
but the car will sustain unavoidable damage due to the rapid change in speed. (Infinite deceleration to zero speed). No amount of
"practical" mechanical design for a typical car will save it from damage when it hits the brick wall.

Practical design, means, yes, you could make that car into a large bulky tank that would not get hurt, but then the car would be very heavy, with
little space for passengers and be very slow and bad on fuel consumption. This is not practical. The same applies to motor drive design. We
could design the drive stage to be able to take the hit of a fast hard stop. But the drive stage would be very large. The controller would have a lot
more components in it and the practicality of it would be diminished. The motor would grow in size for the same torque output to 3 times larger.
This is just not practical.

Hard Stop Crashes:
The best recommendation for preventing damage to the motor/controller in the case of hitting a hard stop is to place a limit switch near
the hard stop that trips the motor off line just prior to hitting the stop. The best way to prevent it beyond that is to prevent the cause of
hitting the hard stop in the first place. If this is due to slow brake response, then use automatic control as mentioned above in the brake
section of this document.

If this is due to jogging the motor in Velocity mode and not letting of the jog switch in time, then jog in position mode instead and use the
"X" or "S" command to stop the motor when the jog switch is released. In any case, much care should be taken to be sure the motor is
not intentionally or unintentionally allowed to hit a hard stop while under normal speeds and load conditions. Even a protective shunt will
not always be good enough to suppress a large inductive kick that results form a hard stop crash.

Loss of Power at motor connector while under load:
At first glance, this may not seem like a big deal. In reality, it is. As discussed above, Back EMF is potentially damaging to the motors. If
the connection to the motor is lost while under load, there is a chance that the back-EMF spike could reach damaging levels. If E-stop
safety in a particular applications requires removal of dive power, then be sure a protective shunt is between the E-stop contact and the
motor connector.

System Design Techniques to Aid in Motor Protection

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 48

Example SmartMotor™ Code

Various Loops, Trigger Events and Subroutines

Wait on Input to Go Low

WHILE UAI==1 LOOP		 ' Watch Port A until it goes low

WHILE UAI==0 LOOP		 ' Watch Port A until It goes high

WHILE Bt			 ' While Busy Trajectory Bit is On
	 IF UAI==1		 ' If Port A goes high
		 GOSUB10	 ' Run Subroutine 10
	 ENDIF	
LOOP				 ' Continue Checking

TWAIT				 ' Hold While Busy Trajectory Bit is On
IF Bo==1			 ' If Motor Off Bit comes is on
GOSUB1			 ' Run Subroutine 1	 (see below)
ENDIF				 ' Continue Checking

C1	 ' Start of Subroutine 1
IF Be				 ' Checking for error status bits
	 PRINT("Position Error",#13)	
ENDIF	
IF Bh	

PRINT("Over Temp Error",#13)	
ENDIF	
IF Bi	

PRINT("Over Current Error",#13)	
ENDIF	
RETURN			 ' Return to line just below GOSUB1

Wait on Input to Go High

Check Input While Moving and perform some function

Check For Errors after a move

Example Error Handler Routine (see above)

Note: 	 Bo is the Motor-Off status bit. It represents the state of the drive amplifier but NOT a fault condition. It just states whether the drive
	 amplifier is on or not.

The Drive Amplifier WILL turn off under any of the following conditions: Position Error (Be, position error status bit)

Travel Limit Error	(Br, Bl, Bp, Bm limit switch status bits)

Over Temperature/Continuous Over Current (Bh status Bit)

In the "Plus" version firmware (4.76 or later), The motor will automatically suspend all program execution upon reaching any of the above
stated faults. (In other words the "END" command is issued). There is a n option to automatically call C1 on interrupt vice ending program
execution by issuing F=32. The C1 subroutine must end with RETURNF (return-fault) for this to work properly.

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 49

Various Loops, Trigger Events and Subroutines (continued)

x=100000			 ' Assign desired position to some variable
P=x				 ' Assign that variable to Commanded Position
G				 ' Start move

WHILE Bt			 ' While Busy Trajectory Bit is On
	 IF UAI==0		 ' If Port A goes low

' jump to "pause" subroutine	
		 GOSUB20	 ' Run Subroutine 20
	 ENDIF	
LOOP

WHILE Bt			 ' While Busy Trajectory Bit is On
C20	 ' Start of Pause Subroutine
	 X			 ' Stop Motor with X command (Decel to a stop)
	 WHILE UAI==0 LOOP	' While Input is low, do nothing
	 P=x			 ' Re-set position to desired position
	 G			 ' Continue on with move
RETURN

x=20000			 ' Set Position to trigger on during a move	
P=50000			 ' Set commanded position to move to
G				 ' Start Move
WHILE Bt			 ' While Moving

IF @P>x		 ' If present position exceeds "x"
		 UB=1		 ' Set Port B to 5VDC
		 WAIT=400	 ' wait about 1/10th of a second
		 UB=0		 ' Set Port B to Zero Volts
		 BREAK		 ' Break Out of Loop

ENDIF	
LOOP
TWAIT				 ' wait for move to complete

x=20000			 ' Set Position to trigger on during a move	
P=50000			 ' Set commanded position to move to
G				 ' Start Move
WHILE Bt			 ' While Moving

IF @P>x		 ' If present position exceeds "x"
		 UB=1		 ' Set Port B to 5VDC
		 WAIT=400	 ' wait about 1/10th of a second
		 UB=0		 ' Set Port B to Zero Volts
		 BREAK		 ' Break Out of Loop

ENDIF	
LOOP
TWAIT				 ' wait for move to complete

Pause Move on Input-High and Continue upon going low

Scan input while moving

Pause Subroutine (see above for calling code to this)

Pulse output on at a given position

Pulse output on at a given position

Example SmartMotor™ Code

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 50

Various Loops, Trigger Events and Subroutines (continued)

O=0
P=50000			 ' Set commanded position to move to
e=50				 ' Set Desired Trigger Point
E=1000				 ' Set Max allowable Position Error to 1000
UBO				 ' Set Port B as An Output
UB=1				 ' Set it to 5VDC
G				 ' Start Move
WHILE Bt			 ' While Moving
	 IF @PE>e		 ' If Real Time Position Error Exceed e
		 UB=0		 ' Set Port B to Zero
	 ENDIF	
LOOP	

O=0
V=1500000			 ' Set commanded speed
A=500				 ' Set commanded acceleration
MV				 ' Start Velocity Move
x=50				 ' Set Desired Trigger Point
G				 ' Start Move
WAIT=500			 ' Wait to get past accel Knee
WHILE Bt			 ' While Moving
	 IF UIA>x		 ' If Motor Current Exceeds 500 milliamps
		 OFF		 ' Turn off the motor
	 ENDIF	
LOOP

O=0
V=1500000			 ' Set commanded speed
A=500				 ' Set commanded acceleration
MV				 ' Start Velocity Move
x=50				 ' Set Desired Trigger Point
G				 ' Start Move
WAIT=500			 ' Wait to get past accel Knee
WHILE Bt			 ' While Moving
	 IF UIA>x		 ' If Motor Current Exceeds 500 milliamps
		 OFF		 ' Turn off the motor
	 ENDIF	
LOOP

Turn Output on If Real Time Position Error exceed user amount

Stop Motion if Motor Current Exceeds Specified amount

Stop Motion if Motor Current Exceeds Specified amount

Example SmartMotor™ Code

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 51

'==
'Example of Home to a Hard Stop
'==

F=32			 ' Enable Fault routine
h=-500		 ' This is some home offset from hard stop
			 ' to define home as zero
r=1			 ' Make r a -1 to reverse home direction

v=500000		 'some faster home speed off of hard stop
'==
GOSUB11		 ' call some home routine
'==
END
'==
C1			 ' Fault Routine
 IF q==123		 ' If HOMING
 ZS			 ' Clear fault and return to HOMING
RETURNF

C11
 q=123
 PRINT("Homing motor",#13)
 MV
 V=-100000*r	 ' HOMING VELOCITY
 A=1000		 ' HOMING ACCEL
 AMPS=200		 ' Limit motor current while homing
 E=30			 ' SETTING ERROR FOR HARD STOP LIMIT
			 ' This may need to be changed
 G			 ' start a velocity mode move
 TWAIT		 ' Motor will drop out of TWAIT
			 ' when it errors against hard stop.	

 PRINT("Hit hard stop",#13)
 PRINT("Switching to torque mode",#13)
 T=-100*r		 ' Set Torque Value
 MT			 ' Mode torque to hold against hard-stop
 WAIT=1000		 ' insure gap is closed
 PRINT("Setting position register",#13)
 O=h*r		 ' Setting present position to HOME OFFSET value
 X
 AMPS=1000		 ' Raise motor current for normal operation
 E=1000		 ' setting normal running error limit
 V=v
 MP
 P=0
 PRINT("Moving to Zero",#13)
 G
 TWAIT		 ' do nothing until trajectory is complete
 PRINT("Motor is at Home",#13)
 q=0
RETURN

Home to Hard Stop

Example SmartMotor™ Code

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 52

END

C30	 ' Torque Mode method (Slingshot mode)
' In this method, up to 2 shaft rev’s could occur
' It is good for direct drive where single load turn equals single shaft turn
 i=I		 ' This clears out the Index register
 T=300	 ' Set torque level
 MT		 ' start moving
 WHILE i==I LOOP	
 T=-1		 ' stop fast (dynamic break)
 MP		 ' shift to position mode
 P=I+2000	 ' go to next index to prevent backup
 G		 ' start moving
 TWAIT	 ' wait until move is complete
 WAIT=200	 ' settling time
 O=0		 ' set position to zero
RETURN

C31	 ' Relative mode method (move quick, go to last seen)
' In this method, motor could back up almost a full rev
 i=I		 ' This clears out the Index register
 D=2020	 ' (4040 for a 34 frame or larger)
 V=100000
 A=500
 G		 ' move relative just over 1 shaft turn
 TWAIT
 P=I		 ' set commanded position to last index seen
 G
 TWAIT
 WAIT=200
 O=0		
RETURN

C32	 'Velocity mode method (slowly find next index)
'In this method, motor could back up almost a full rev
 i=I
 V=100000
 A=500
 MV			
 G
 WHILE i==I LOOP
 X
 P=I
 G
 TWAIT
 WAIT=200
 O=0
RETURN

Home To Index (3 Examples)

Example SmartMotor™ Code

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 53

C30		 ' This subroutine give time to 4 decimal places from clock ticks
		 ' To run it, assign "u" the value in clock ticks to test.
	 t=u/4069			 'Getting Seconds
	 PRINT("Cycle Time=")
	 PRINT(t,".")		 'Printing Full Seconds
	 v=0
	 WHILE v<4
		 t=t*4069		 'Multiply out last whole value
		 t=u-t			 'Getting remainder
		 u=t*10		 'multiplying by 10
		 t=u/4069		 'to get next tenths
		 PRINT(t)		 'printing NEXT 10ths
		 v=v+1
	 LOOP
	 PRINT(" seconds",#13)
RETURN

'==
C1
	 aa=aa+Be	 'assigning Status Bits to 4 consecutive variables
	 bb=bb+Bh
	 cc=cc+Ba
	 dd=dd+Bo
	 EPTR=100	 'Setting EEPROM Memory Pointer
	 VST(aa,4)	 'Storing 4 consecutive 32-bit variables into EEPROM
RETURNF
'==

'==
C3	 'Get latest Status Bit totals
	 EPTR=100
	 VLD (aa,4)	 'Loading 4 consecutive 32-bit variables from EEPROM data
	 PRINT("Error Bit Totals",#13)
	 PRINT("Be:",aa," (Position Error)",#13)
	 PRINT("Bh:",bb," (Over Temperature)",#13)
	 PRINT("Ba:",cc," (Peak Over Current)",#13)
	 PRINT("Bo:",dd," (Motor OFF)",#13)
RETURN
'==

Cycle Time Calculator Subroutine

Long Term Memory Example Storing Error Bits

Example SmartMotor™ Code

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 54

'The following code takes an analog reading,
'places a "no-change" dead band on it and uses it to command
'a velocity to a given trajectory.
'This code does not include accel values.
'The WHILE loop assumes a previous
'move or velocity mode has been issued.

d=10		 'this is the dead band in A/D counts of the analog signal
o=512		 'this is an offset which allows negative swings in value
m=40		 'this is a multiplier used as a span adjust to the speed
w=10		 'this is the delay time between reads

WHILE 1==1
	 a=UCA-o		 'take analog reading of PORT C
	 x=a-b		 'This is a way to check for changes in the
 			 'Pot value and give a dead band

	 'The following code waits until the analog value
	 'changes by +/- the dead band prior to sending
	 'a new SPEED to the motor.
	 IF x>d	
 		 V=b*m 'multiplier for Pot input to position
 		 G
 	 ELSEIF x<-d
 		 V=b*m
 		 G
 	 ENDIF

 	 b=a 		 'update d for prevention of hunting in place
 	 WAIT=w

LOOP

END

Analog Controlled Variable Speed with Dead-Band and Offset

Example SmartMotor™ Code

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 55

(Written for >= V4.76 Firmware only)
' Contains Feed Hold, Reset, Fault Out
'==
'Setting up I/O 			 (Note: Port D is being used as a Limit switch Enable)
UGI	 ' Set Port G as Input for "Error Restore"
UCO	 ' Port C set as output for "Fault Out"
BRKC	 ' Make Port C be brake control to be fault output
	 ' Port D will be used as a motor enable
'==
'Set Interrupt Control
F=97	 ' F=1 causes controlled deceleration on fault
	 ' F=32 C1 gets called on motor fault
	 ' F=64 C2 gets called when Port G gets grounded
'==
'Setting variables
m=168		 ' used for MFMUL
d=100		 ' used for MFDIV
E=20000	' Set high error count in case Master Encoder is moving when reset	
'==
'Tuning
KP=50
KI=50		 ' usually 1/2 of KP
KD=1200	' usually 5 to 10 times KP
KV=1000	' Velocity Feed Forward, 1000 is a good value
F		 ' Update/Set PID Filter
'==
END
'==
C1	 ' This subroutine is called on interrupt any time the motor errors out.
 IF q==1		 'Note: q can be used to print out or not
	 IF Bh	 PRINT("Excessive temperature",#13)	 ENDIF
	 IF Bl	 PRINT("Enable Lost",#13)			 ENDIF
	 IF Be	 PRINT("Excessive position error",#13)	ENDIF
 ENDIF	
	 IF Bw 	 GOSUB2 ENDIF		 ' Checking for Math Wrap Status	
	 WHILE UDI==1 	 LOOP		 ' DO nothing until enable returns
RETURNF
'==
C2	 ' This subroutine is called any time the "Go" switch is made
	 O=0			 ' Set Position to zero
	 MF4			 ' Set to count external encoder at full quadrature
	 MFMUL=m		 ' Multiply incoming counts by "m"
	 MFDIV=d		 ' Divide incoming counts by "d"
	 MFR			 ' Calculate Ratio
	 IF UDI==0		 ' If enable returned
		 ZS 		 ' Reset Motor Errors for next move
	 ENDIF
	 G			 ' Start following at above parameters
	 ' Note: If ZS was not issued, G will not take effect
RETURNI	' Return from interrupt called C2
RETURN	 ' Return from GOSUB called C2
'==

Slave Conveyor Application

Example SmartMotor™ Code

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 56

'==
' 16 Position Preset triggered via 4 bit command and Go input
'==
'	 This program was written around the CBL43-52 cable
'	 It is set up to use Ports A, B, C, and D as BCD inputs
'	 and Port G as a Go input
'	 While Port E is a busy output and Port F is Fault output.
'==
' Setting up I/O
UAI			 ' Ports A through D will be used
UBI			 ' As 4 bit BCD Inputs
UCI
UDI
UE=1			 ' Port e will be busy output
UEO			 ' When set to zero, it is busy
UF=1			 ' Port F will be fault output
UFO			 ' when set to 1, there is a fault
UGI			 ' Go Input
'==
' Setting up tuning
KP=100
KI=50
KD=1200
F
'==
GOSUB10		 ' call some home routine
UF=0			 ' clear fault output bit
UE=0			 ' clear busy output bit
'==
GOSUB35		 'get data
WHILE 1
	 IF UGI==0		 'If Go pressed
		 GOSUB31
	 ENDIF
LOOP
'==
END
'==
C1
			 'place fault code here
RETURN
'==
C4	 'check binary switch, assign it to "d"
' Note, For Version >=4.76, d=U&15 will do the same as all the following code.
b=UBI*2
a=UAI+b
c=UCI*4		
d=UDI*8	
d=c+d		
d=d+a			 'd now contains the 4 bit value of the inputs
RETURN

16-Position Pre-Select, BCD-Triggered

Example SmartMotor™ Code

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 57

C10	 'PLACE HOME ROUTINE HERE
	 O=0
RETURN
'==
C31	 ' BCD to parameter and move subroutine
	 GOSUB4		 ' check BCD Input
	 a=d			 ' Accel array index
	 v=d+8			 ' Velocity Array Index
	 p=d+24		 ' Position Array Index
	 w=d+80		 ' Wait Time Array Index (Or some other move time variable)
	 A=aw[a]
	 V=al[v]
	 P=al[p]
	 UE=1			 ' Set busy Output bit
	 G
	 WHILE Bt		 ' While Moving
		 IF UGI==1
			 X 	 'STOP IF GO RELEASED
		 ENDIF
	 LOOP
	 IF UGI==0
	 WAIT=w		 ' Use if needing settling time
	 ENDIF
	 UE=0			 ' Clear Busy Output Bit
	 IF Bo			 ' If Fault occurred
		 UF=1
		 GOSUB1
	 ENDIF
	 WHILE UGI==0 LOOP	 ' WAIT FOR GO TO RELEASE
RETURN
'==
C35	 ' DEFAULT DATA, Change as needed
'ACCEL	 VELOCITY		 POSITION		 WAIT TIME AT END OF MOVE
aw[0]=2500	 al[8]=2000000	 al[24]=s		 aw[80]=200
aw[1]=2500	 al[9]=2000000	 al[25]=0		 aw[81]=1000
aw[2]=1500	 al[10]=2000000	 al[26]=s/2		 aw[82]=4000
aw[3]=200	 al[11]=100000	 al[27]=s		 aw[83]=1000
aw[4]=3500	 al[12]=2000000	 al[28]=s/8		 aw[84]=500
aw[5]=3500	 al[13]=1000000	 al[29]=0		 aw[85]=1000
aw[6]=500	 al[14]=1000000	 al[30]=s/4		 aw[86]=100
aw[7]=200	 al[15]=1000000	 al[31]=0		 aw[87]=1000
aw[8]=500	 al[16]=1000000	 al[32]=s/10		 aw[88]=1000
aw[9]=500	 al[17]=1000000	 al[33]=s/9		 aw[89]=1000
aw[10]=500	 al[18]=1000000	 al[34]=s/8		 aw[90]=1000
aw[11]=500	 al[19]=1000000	 al[35]=s/7		 aw[91]=1000
aw[12]=500	 al[20]=1000000	 al[36]=s/6		 aw[92]=1000
aw[13]=500	 al[21]=1000000	 al[37]=s/5		 aw[93]=1000
aw[14]=500	 al[22]=1000000	 al[38]=s/4		 aw[94]=1000
aw[15]=500	 al[23]=1000000	 al[39]=s/3		 aw[95]=1000
RETURN

16-Posiotion Pre-Select, BCD-Triggered (Continued)

Example SmartMotor™ Code

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 58

'==
' 16 Subroutine Preset triggered via 4 bit command and Go input
'==
'	 This program was written around the CBL43-52 cable
'	 It is set up to use Ports A, B, C, and D as BCD inputs
'	 and Port G as a Go input
'	 While Port E is a busy output and Port F is Fault output.
'==
' Setting up I/O
UAI			 ' Ports A through D will be used
UBI			 ' As 4 bit BCD Inputs
UCI
UDI
UE=1			 ' Port e will be busy output
UEO			 ' When set to zero, it is busy
UF=1			 ' Port F will be fault output
UFO			 ' when set to 1, there is a fault
UGI			 ' Go Input
'==
WHILE 1
	 IF UGI==0		 'If Go pressed
		 GOSUB31
	 ENDIF
LOOP
'==
END
'==
C1
			 'place fault code here
RETURN
'==
C4	 'check binary switch, assign it to "d"
' Note, For Version >=4.76,
' d=U&15 will do the same as all the following code.
b=UBI*2
a=UAI+b
c=UCI*4		
d=UDI*8	
d=c+d		
d=d+a			 'd now contains the 4 bit value of the inputs
RETURN
'==

16-Subroutine Pre-Select, BCD-Triggered

Example SmartMotor™ Code

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 59

C31	 		 ' BCD to parameter and move subroutine
GOSUB4	 ' check BCD Input
 SWITCH d
	 CASE 0	 GOSUB100	 BREAK
	 CASE 1	 GOSUB101	 BREAK
	 CASE 2	 GOSUB102	 BREAK
	 CASE 3	 GOSUB103	 BREAK
	 CASE 4	 GOSUB104	 BREAK
	 CASE 5	 GOSUB105	 BREAK
	 CASE 6	 GOSUB106	 BREAK
	 CASE 7	 GOSUB107	 BREAK
	 CASE 8	 GOSUB108	 BREAK
	 CASE 9	 GOSUB109	 BREAK
	 CASE 10	 GOSUB110	 BREAK
	 CASE 11	 GOSUB111	 BREAK
	 CASE 12	 GOSUB112	 BREAK
	 CASE 13	 GOSUB113	 BREAK
	 CASE 14	 GOSUB114	 BREAK
	 CASE 15	 GOSUB115	 BREAK
 ENDS
RETURN
'==
C100	 'Place Needed Code here for Selected Subroutine	
RETURN
C101	 'Place Needed Code here for Selected Subroutine	
RETURN
C102	 'Place Needed Code here for Selected Subroutine	
RETURN
C103	 'Place Needed Code here for Selected Subroutine	
RETURN
C104	 'Place Needed Code here for Selected Subroutine	
RETURN
C105	 'Place Needed Code here for Selected Subroutine	
RETURN
C106	 'Place Needed Code here for Selected Subroutine	
RETURN
C107	 'Place Needed Code here for Selected Subroutine	
RETURN
C108	 'Place Needed Code here for Selected Subroutine	
RETURN
C109	 'Place Needed Code here for Selected Subroutine	
RETURN
C110	 'Place Needed Code here for Selected Subroutine	
RETURN
C111	 'Place Needed Code here for Selected Subroutine	
RETURN
C112	 'Place Needed Code here for Selected Subroutine	
RETURN
C113	 'Place Needed Code here for Selected Subroutine	
RETURN
C114	 'Place Needed Code here for Selected Subroutine	
RETURN
C115	 'Place Needed Code here for Selected Subroutine	
RETURN

16-Posiotion Pre-Select, BCD-Triggered (Continued)

Example SmartMotor™ Code

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 60

'This program demonstrates recording to non-volatile memory
' for a teach or record and play back example.
' It Records 5 positions, and them plays them back
'Port D is used to both record playback.

OFF			 ' TURN MOTOR OFF
 MP			 ' Set to Position Mode
 O=0			 ' RESET ORIGIN
 UDI			 ' Use Port D as Event Trigger
 EPTR=0		 ' Reset EEPROM Pointer
 e=0			 ' Use the Variable "e" as a counter
 WHILE e<5		
 	 IF UDI==0		 ' IF Port D INPUT IS GROUNDED
 		 a=@P		 ' RECORD POSITION IN VARIABLE a
 		 VST(a,1)	 ' STORE 1 VARIABLE IN THE INTERNAL EEPROM

' the Pointer will index by 4 because "a" is ' a 4 byte number
 		 e=e+1		
 	 ENDIF		
LOOP

C0	 'ROUTINE 0 will go to positions stored in long term ram
 WAIT=8000		 ' WAIT 2 SECONDS
 P=0			 ' GO BACK TO ORIGIN
 V=100000		 ' SET VELOCITY
 A=100		 ' SET ACCELERATION
 G			 ' GO
 TWAIT		 ' WAIT UNTIL MOVE FINISHED
 WAIT=4000		 ' WAIT 1 SECOND

 EPTR=0		 ' RESET ELECTRONIC POINTER

 c=0			 ' INITIALIZE VARIABLE
 WHILE c<5		 ' WHILE LOOP		
 	 VLD(b,1)	 ' LOAD VALUE STORED IN THE INTERNAL EEPROM
			 ' AT EPTR=0 INTO VARIABLE b
 	 P=b		 ' SET POSITION
 	 A=100		 ' ACCELERATION
 	 V=100000	 ' VELOCITY
 	 G		 ' GO
 	 TWAIT		 ' WAIT UNTIL MOVE IS FINISHED
 	 WAIT=4000	 ' WAIT FOR 1 SECOND
 	 c=c+1		 ' INCREMENT VARIABLE
 LOOP			 ' LOOP

 P=0			 ' POSITION TO ZERO
 G			 ' GO
 TWAIT		 ' WAIT UNTIL MOVE IS FINISHED

WHILE UDI==1	 LOOP 	 ' WHILE INPUT IS NOT GROUNDED

 GOTO0		 ' AND REPEAT playback cycle
END			 ' END

Record and Playback Example

Example SmartMotor™ Code

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 61

Expanded I/O Using the DINIO-485

Example SmartMotor™ Code

'===
'This is test and Example Code for DINIO-RS485 I/O Cards
'===
GOSUB99	 'open RS-485 channel
PRINT("Opening RS-485 Port",#13)
'===
GOSUB5	' Address I/O cards
GOSUB1	' turn on outputs one at a time
GOSUB2	' turn off outputs one at a time
GOSUB0	' reset all I/O blocks to boot-up condition
GOSUB8	' Set Report commands for full reports
'===
WHILE 1
	 GOSUB20	 'Copy Inputs to Outputs
LOOP
END
'===
C99	 'Opening RS-485 Channel to give and receive commands
PRINT("Opening RS-485 Port",#13)
	 OCHN(RS4,1,N,9600,1,8,C)
RETURN
'===
C0	 ' This subroutine resets I/O blocks to default boot-up status
	 ' Note: I/O blocks will be in the de-addressed state after doing this.
PRINT("Resetting Expanded I/O Card",#13)
	 PRINT1("ZA ")
RETURN
'===
C1	 ' This subroutine turns on output bits 0 though 15
	 ' The OS command (Output Set) turns on or "sets" output "n".
PRINT("Turning on Expanded Outputs one at a time",#13)
	 x=0
	 y=15
	 WHILE x<=y
		 WAIT=1500
		 PRINT1("OS",x,#13)
		 x=x+1
	 LOOP
	 x=0
RETURN
'===
C2	 ' This subroutine turns off output bits 0 though 15
	 ' The OR command (Output Reset) turns off or "Resets" output "n".
PRINT("Turning off Expanded Outputs one at a time",#13)
	 x=0
	 y=15
	 WHILE x<=y
		 WAIT=1500
		 PRINT1("OR",x,#13)
		 x=x+1
	 LOOP
	 x=0
RETURN
'===

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 62

Expanded I/O Using the DINIO-485 (Continued)

Example SmartMotor™ Code

'===
C5	 ' This Subroutine "addresses" the I/O cards.
	 PRINT("Addressing Expanded I/O Card",#13)
	 ' All I/O cards boot-up to the de-addressed state.
	 ' All I/O cards are fixed to ASCII dec. address 244
	 PRINT1(#244," ")
RETURN
'===
C8	 ' This Subroutine Makes Card Report all Bits and Bytes
PRINT("Setting up Expanded I/O card to report all bits and bytes",#13)
	 PRINT1(#244,"IOF=127 ")
	 ' Syntax:	 IOF=number (binary option additive 0-127)
	
RETURN
'===
C9	 ' This subroutine sends out a global address.
PRINT("Sending out global address",#13)
	 PRINT1(#128," ")
RETURN
'===
C10	 ' This subroutine is for troubleshooting reports
	 ' It is used in conjunction with an Advanced Monitor Status Watch file.
PRINT("Scanning ab[i] for 5 seconds",#13)
	 CLK=0
	 WHILE CLK<50000
		 PRINT1(#244,"Rab[",i,"] ")
		 WAIT=50
	 LOOP
RETURN
'===
C11	 ' This Subroutine changes baud rate to 38400 on both
	 ' the SmartMotor running this program and all I/O cards attached.
PRINT("Setting RS-485 port to 38400 baud",#13)
	 PRINT1(#244,"BAUD38400 ")
	 OCHN(RS4,1,N,38400,1,8,C)
RETURN
'===
C12	 ' This Subroutine changes baud rate to 9600 on both
	 ' the SmartMotor running this program and all I/O cards attached.
PRINT("Setting RS-485 port to 9600 baud",#13)
	 PRINT1(#244,"BAUD9600 ")
	 OCHN(RS4,1,N,9600,1,8,C)
RETURN
'===
C20	 ' This subroutine copies input status to outputs
PRINT("Outputs mimic inputs while x = 0",#13)
	 WHILE x==1
		 PRINT1("ab[1]=",ab[0]," ")
		 WAIT=20
	 LOOP
RETURN
'===

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 63

Expanded I/O Using the Anilink Opto-1 Board

Example SmartMotor™ Code

'===
'Anilink I/O Example
'===
'	 Port		 Default				 Alternate
'	 E		 AniLink Data			 RS-485 A(Half Duplex)
'	 F		 AniLink Clock 			 RS-485 B(Half Duplex)
'===

' This code shows how to communicate with Anilink Devices.
' Unlike RS-485 Mode, Ports E and F do not require any code
' to set them up as Anilink.
' Upon any Anilink calls, the ports automatically revert to Anilink I/O.

END

'===

C1
' The following code allows toggling of expanded I/O
' via the OPTO1 or DIO100 Anilink I/O boards.
' These are 16 channel boards that are addresses as
' 2 blocks of 8 each.
' In this code, the OPTO1 board was used .
' It was plugged into an industry standard PB-16 board.
' The board was jumpered to base address A
' In this code, I used port A as inputs and port B as outputs.
' However, either address could have been ins or outs.

'===

i=DINA0 	 ' assigns i the entire input port

' The following will yield a 1 if on or 0 if off
' Into the variable i.

i=DINA0&1		 ' read channel 1
i=DINA0&2		 ' read channel 2
i=DINA0&4		 ' read channel 3
i=DINA0&8		 ' read channel 4
i=DINA0&16		 ' read channel 5
i=DINA0&32		 ' read channel 6
i=DINA0&64		 ' read channel 7
i=DINA0&128		 ' read channel 8

oo=255 		 ' oo will track output status
' 255 is 8 ones , ones re off and zeros are on.

DOUTB0,oo		 ' turns all outputs off (channel 8-16)

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 64

Expanded I/O Anilink (Continued)

Example SmartMotor™ Code

' For Opto racks, a 1 is off and a 0 is on for output bits.
DOUTB0,1|oo		 ' turns on output channel 8
DOUTB0,2|oo		 ' turns on output channel 9
DOUTB0,4|oo		 ' turns on output channel 10
DOUTB0,8|oo		 ' turns on output channel 11
DOUTB0,16|oo	 ' turns on output channel 12
DOUTB0,32|oo	 ' turns on output channel 13
DOUTB0,64|oo	 ' turns on output channel 14
DOUTB0,128|oo	 ' turns on output channel 15
DOUTB0,256|oo	 ' turns on output channel 16

DOUTB0,254&oo		 ' turns off output channel 8
DOUTB0,253&oo		 ' turns off output channel 9
DOUTB0,251&oo		 ' turns off output channel 10
DOUTB0,247&oo		 ' turns off output channel 11
DOUTB0,239&oo		 ' turns off output channel 12
DOUTB0,223&oo		 ' turns off output channel 13
DOUTB0,191&oo		 ' turns off output channel 14
DOUTB0,127&oo		 ' turns off output channel 15
DOUTB0,127&oo		 ' turns off output channel 15

RETURN

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 65

Hardware Error Handling Setup-Code: (See next page for Interrupt Subroutines)

Example SmartMotor™ Code

'===
'Error handling Example and RS-485 I/O code example using 4 motors
' with motor 1 as master
'****** This was written for V4.76 or later Firmware *****
' Note, The Motors handle I/O handshaking for errors
' All other code is assumed to come from a Host PLC or PC via comm port
' for this example.
' Motor 1 can be set up as mater though.
'===

'===
OCHN(RS4,1,N,9600,1,8,C)	 ' Open RS-485 comm channel (Ports E and F)
WAIT=20
'===
' Setting up I/O:
UCO	 ' Set Port C as an Output
UC=0	 ' set to zero volts
WAIT=100
ZS	 ' Clear errors
' Now all motors will have zero volts on Port D and no limit faults.
'===
' Set up 4.76 motors to call C1 on any shaft protection fault
' and to call C2 on Port G grounded
F=96
' Note F-32 sets C1 interrupt
' F-64 sets C2 interrupt.
' F parameters are bit additive.
'===
END							 ' mark END of program..
'===

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 66

Hardware Error Handling Setup-Code (Continued)

Example SmartMotor™ Code

C1	 ' Fault interrupt.
' All motors jump to this subroutine on interrupt on
' any shaft protection fault.
	
UDI	 'Disable Port D as negative limit input

' IF one motor faults, it will cause a chain reaction
' of all motors faulting on loss-of-limit
' Remember that Port C is an output tied to Port-D limit-switch
' input of next motor down for each motor.

	 ' The Limits are active high asserted, i.e.
 ' when they go to 5VDC,the motor will fault.
	 ' The 5Kohm resistor internally causes fail-safe

' protection on loss of connection.

	 UC=1		 'Echo error to next motor
	 WAIT=40	 ' wait FOR 40/4069 sec before reset output C
	 UC=0		 ' Set Port C to zero volts to check connection
	 WAIT=300

	 IF Be		 'If Position Error

			 ' place code here for position errors in this motor

	 ELSEIF Bh	 'If Over Temp Error

			 ' place code here for thermal errors in this motor

	 ELSEIF UDI==1		 ' Wait =300 time delay enables this to work.

			 ' place code here for errors passed from other motors

	 ENDIF

	 IF ADDR==1	 ' If Master Motor

		 UC=1	 ' Hold Fault Out until Host clears the fault

		 ' place additional code here if master needed to handle faults.
	 ENDIF	

	 UDM		 ' Reset Port D as Limit switch input

RETURNF	 ' RETURNF is for >=V4.76 motors calling C1 on Fault Interrupt

'===
C2		 ' Called on Interrupt because Port G went Low
	 F=32		 ' Disable Port G interrupt while moving
	 UA=0		 ' Set busy bit to host
	 WHILE Bt LOOP	' Maintain Port A low until move is complete
	 IF UBI==0	 ' Check for other motor busy bit from Port B
		 UA=0	 ' and echo it out to next motor
		 WHILE UBI==0 LOOP
	 ENDIF
	 UA=1
RETURNI	 ' RETURNI is for >=V4.76 motors calling C2 on Input interrupt

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 67

Traverse and Take-Up Winder Application
'---
' This is an example traverse and take-up program.
' NOTE: THIS WAS WRITTEN FOR VERSION 4.76 MOTORS
' 4.76 MOTORS DEFAULT TO MODE TORQUE BRAKE ON ANY MOTOR PROTECTION FAULT.
' SOFTWARE LIMITS (ONLY IN VERSION 4.76) ARE BEING USED AS TRAVERSE REVERSAL POINTS.
' WHEN THE SOFTWARE LIMITS ARE REACHED, THE TRAVERSE MOTOR WILL
' DYNAMICALLY BRAKE TO A STOP.
' IT WILL THEN SIT THERE FOR "d" COUNTS OF TAKE-UP MOTOR BEFORE CONTINUING
' ON IN THE OTHER DIRECTION.
' THE TRAVERSE MOTOR WILL CONTINUE TRAVERSING back and forth UNTIL THE
' TAKE-UP MOTOR IS DONE.
' THE TAKE-UP MOTOR IS MASTER. IT SPINS ONE TURN BEFORE TELLING
' THE TRAVERSE TO START.
' AT THE END OF THE CYCLE, BOTH MOTORS ARE LEFT IN SERVO LOCK.
' PORT B OF MOTOR 1 (TAKE-UP MOTOR) IS THE CYCLE START INPUT
' PORT A OF MOTOR 1 IS THE HOME SIGNAL.
' TWO OUTPUTS ARE USED ONE FOR BUSY (MOTOR 1 PORT C), THE OTHER
' FOR FAULT (MOTOR 1 PORT D).
' PORT G IS AVAILABLE ON BOTH MOTORS AS AN INTERRUPT CALL TO C2
' PORTS C AND D ARE OPEN FOR USE ON MOTOR 2 (TAKE-UP MOTOR)
' THEY COULD BE USED AS HARD TRAVEL LIMITS, BUT KEEP IN MIND THAT SOFT LIMITS
' ARE BEING USED
' AND THE TAKE-UP MOTOR HOMES TO A HARD STOP, SO NO LIMIT SWITCHES ARE EVER NEEDED

' This program is written in such a way that the same program gets downloaded to both motors.
' The schematic below show how to wire the motors together for this program.
' It shows the use of RS-485 communications for purposes of error handling and Master/
 slave operation.
' The program can be modified to use only RS-232 if the I/O are needed.
'---
' Motor 1 (X Axis) is the Take-Up Axis
'
' Motor 2 (Y Axis) is the Traverse Axis and will follow Motor 1 (Take-up axis

Example SmartMotor™ Code

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 68

Example SmartMotor™ Code

Traverse and Take-Up Winder Application (Continued)

'---
'Schematic)
'

'--

'--
' Setting Addresses, Motors use RS-232 comms to determine which one is motor 1.
q=0
WAIT=1000
PRINT(#128,"q=1 ",#13)		 'each motor is print out of the serial port
WAIT=4000
IF q==0				 'only motor 1 can print to motor 2
	 SADDR1	
ELSEIF q==1				 ' motor 2 can not print to motor 1
	 SADDR2								
ENDIF
ECHO					 ' set to echo mode for RS-232 communications
'--

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 69

Example SmartMotor™ Code

Traverse and Take-Up Winder Application (Continued)
'---
F=104					 ' This sets up error code interrupts for both motors since
they are 4.76 motors
' Note: On version 4.76 firmware
'	 F=32 causes interrupt call to subroutine 1 on any motor fault
'	 F=64 causes interrupt call to subroutine 2 on port G getting grounded
'	 F=1 reverses shaft rotation
'	 F=8 will zero KI term at end of move

' This program does not use C2 for anything though.
'--

'--
' Setting up RS-485 Communications for both motors

OCHN(RS4,1,N,19200,1,8,C)				 ' open the RS-485 port
WAIT=4000						 ' Wait a bit
'--

'--
' Setting up Tuning for both motors

KP=100
KI=50
KD=1200
KV=1000
KA=1000
F
E=1000
AMPS=950
'--
IF ADDR==1		 ' Setting up I/O for the Take-Up or X axis

' Setting up Inputs
	 UAI		 ' Port A being used as Home input
	 UBI		 ' Port B being used to start the cycle
' Setting up Outputs
	 UCO		 ' Port C being used as Busy or "Moving" output
	 UC=0		 ' Port C will be GND when motors are not busy and at 5VDC when they are
	 UDO		 ' Port D being used as Fault Output
	 UD=0		 ' Port D will be Grounded when there is no fault and 5VDC if either
motor faults

' Note: Setting a Port to zero makes it zero volts. Setting it to 1 makes it 5VDC

	 ZS 			 ' This clears any boot-up motor errors if you have Version 4.76 or
higher
'--

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 70

Example SmartMotor™ Code

Traverse and Take-Up Winder Application (Continued)

'--

ELSEIF ADDR==2	 ' Setting up I/O for the Traverse or Y axis

	 UCI				 ' Motor 2 needs limits disabled if it is a 4.76 motor
	 UDI
	 ZS 				 ' This clears any boot-up motor errors if you have Version
4.76 or higher

ENDIF

'--
'--
' Setting up Variables for both motors

'-----------------------	 Speeds and
accelerations--
'-----------------------------------	 Take-Up
Motor---
s=100000					 ' Velocity for TAKE-UP MOTOR
a=200						 '' Acceleration for TAKE-UP MOTOR
e=2500						 '' Position Error for TAKE-UP MOTOR
'-----------------------------------	 Traverse
Motor--
ss=100000					 ' Velocity for TRAVERSE MOTOR
aa=200 					 '' Acceleration for TRAVERSE MOTOR
ee=2500					 '' Position Error for TRAVERSE MOTOR
'---
'--
'-----------------------	 Operating Variables (distances and counts)
'-----------------------------------	 Take-Up
Motor---
k=2000						 ' Encoder counts per turn of take-up spool
n=100						 ' Number of turns desired on spool
'-----------------------------------	 Traverse
Motor--
mm=5						 '' gear ratio multiplier
dd=10	 			 '' gear ratio divisor
SLN=100					 '' Low side soft limit for traverse motor
SLP=7000					 '' High side soft limit for traverse motor
d=225						 ' dwell for traverse motor (amount of master encoder
counts traverse motor dwells before reversing)
'--
'--
IF ADDR!=1 GOTO999 ENDIF			 ' If this is not motor 1, END
WAIT=4000
'--
'--
GOSUB100 						 ' HOME MOTORS

GOSUB10						 ' set base speed and accel for each motor
'--

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 71

Example SmartMotor™ Code

Traverse and Take-Up Winder Application (Continued)

'--
' Main Program Loop
WHILE 1
	 IF UAI==0			 ' PLC/Reset-switch told me to home
		 UC=1			 ' Set busy bit to PLC/Light Stack
		 GOSUB100
		 WHILE UAI==0 LOOP	' Latch up catch
		 UC=0			 ' Clear busy bit to PLC
	 ENDIF	

	 WAIT=100

	 IF UBI==0			 ' PLC/Start-switch told me to run the cycle
		 UC=1			 ' Set busy bit to PLC/Light Stack
		 GOSUB50
		 WHILE UBI==0 LOOP	' Latch up catch
		 UC=0			 ' Clear busy bit to PLC
	 ENDIF

LOOP
'--
STACK
C999
END
'--
C1	 ' Error handler deals with any motor protection fault during run-time

	 IF ADDR==2				
		 IF q==4			 ' If traverse motor errors on soft limits while
traversing

			 j=CTR+d		 ' Get end-of-dwell position
			 ZS			 ' Clear soft limit error
			 MFMUL=-MFMUL	 ' negate Mode Follow Ratio
			 MFR			 ' Re-instate MFR
			 WHILE CTR<j LOOP	' Wait until dwell is complete
			 G			 ' Start traversing the other way

		 ELSEIF q==5		 ' If motor errors against hard stop while in home routine

			 PRINT("Traverse hit hard stop while homing",#13)
			 ZS	 'clear the error
		 ELSE	 ' UNEXPECTED ERROR OCCURED
			 STACK
			 END
		 ENDIF

	 ELSEIF ADDR==1
		 PRINT("Take-Up motor error",#13)
	 ENDIF				 ' Turn off motor 1

RETURNF
'--

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 72

Example SmartMotor™ Code

Traverse and Take-Up Winder Application (Continued)

'--
' Write code in here for any interrupt call needs when port G is grounded.
C2
	 IF ADDR==1
		 PRINT("Take-Up Motor G pin grounded",#13)
	 ELSEIF ADDR==2
		 PRINT("Traverse Motor G pin grounded",#13)
	 ENDIF		
RETURNI
'--
'--
C3	 ' This subroutine Commands Y axis move to y and verifies it via RS-485 returns
	 f=1			 ' trap variable which will be re-set by Y axis motor via RS-232
	 PRINT1(#130,"MP P=",y," GOSUB7 ")		
	 ' Sub 7 in Motor-2 updates f to zero when finished moving
	 WHILE f==1 LOOP	 ' Error check routine 	
 f=0		 ' reset trap variable
RETURN
'--
'--
' The following subroutine is used by motor 2 only and is called from motor 1 as needed:
C7					 ' Motor 2 move subroutine
	 G				 ' Motor 1 called C7 and set the position to go to
	 TWAIT
	 PRINT1(#129,"f=0 ")	 ' tell motor 1, motor 2 is finished
RETURN
'--
C10	 ' This code sets up move parameters for both motors

' NOTE: If it is not called or an equivalent code is not executed
' 	 the motors will note move (speed defaults to zero)

	 PRINT1(#130,"MP",#13)		 ' Set Y axis to position mode
	 WAIT=20
	 PRINT1(#130,"V=",ss,#13)	 ' Set Y velocity
	 WAIT=20
	 PRINT1(#130,"A=",aa,#13)	 ' Set Y accel
	 WAIT=20
	 PRINT1(#129,#13)			 ' Re-address motor 1(X axis)
						 ' This is done for convenience sake

 	 V=s					 ' Set X axis Velocity
 	 A=a					 ' Set X axis accel
 	 MP					 ' Set to position mode
RETURN
'--

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 73

Example SmartMotor™ Code

Traverse and Take-Up Winder Application (Continued)

'--
C50
	 PRINT(#140,#13)	 'DE-ADRESSING MOTOR 2
y=bb				 ' Set start point for Traverse motor
	 P=@P G TWAIT	 ' Hold position on Take-up motor
WAIT=200
O=0
GOSUB3		 '	 Send traverse motor to start point
PRINT("Traverse Motor in Start Positon",#13)
 	 V=s
	 A=a			 ' Set Take-up motor commanded position to number of wraps to wind	
	
	 P=k*n			 ' Set Take-up motor commanded position to number of wraps to wind	
	
	
PRINT("Starting Take-Up Motor",#13)
	 G			 ' Start winding

	 WHILE @P<k LOOP			 ' DWELL AT START
	 PRINT1(#130,"GOSUB51 ")	 ' Run Traverse subroutine in Traverse motor
	 WAIT=20
	 PRINT1(#130,"SLE ")		 ' ENABLE SOFTWARE LIMITS IN MOTOR 2

	 TWAIT	

 	 PRINT1(#130,"q=0 ")
	 WAIT=20
	 PRINT1(#130,"SLD ")		 ' DISABLE SOFTWARE LIMITS IN MOTOR 2
	 WAIT=20
	 PRINT("Finished wrapping ",n," turns.",#13)
RETURN
'--
'--
C51	 ' THIS SUBROUTINE SETS UP GEAR RATIO FOR TRAVERSE
	 q=5
	 MF4
	 MFMUL=mm
	 MFDIV=dd
MFR G
	 WHILE q==5 LOOP		 ' MOTOR 1 WILL UPDATE q AT END OF TAKE-UP OPERATION
	 MP P=@P G TWAIT		 ' HOLD POSITION
RETURN
'--

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 74

Example SmartMotor™ Code

Traverse and Take-Up Winder Application (Continued)

'--
C100
	 PRINT(#140,#13)		 'DE-ADRESSING MOTOR 2
	 PRINT("HOME",#13)
	 P=@P 	G			 'hold in place
	 TWAIT
	 O=0	 'set to zero
	 PRINT("TAKE UP AT HOME",#13)	 'NOTE: the word UP is a valid command.
					 'Motor 2 was de-addressed to prevent it from
					 'uploading while homing.
					 'else you would have a bunch of zeros pop up.
	 ' I could have changed UP to Up or up and it would have worked.

	 PRINT1(#130,"GOSUB101 ")' SEND TRAVERSE MOTOR TO HOME
	 f=1
	 WHILE f==1 LOOP
	 PRINT("TRAVERSE AT HOME",#13)
	 PRINT(#128,#13)		 'sending universal address (Addressing motor 2)
RETURN
'--
'--
C101	 'HOME ROUTINE FOR TRAVERSE AXIS
	 q=5			 ' allows C1 to know motor is in home routine
	 MV			 ' moving towards the hard stop in velocity mode
	 V=-100000		 ' set home speed
	 A=100			 ' set home accel
	 AMPS=85		 ' Limiting motor torque to protect traverse slide from damage
	 E=50			 ' Setting a low error count so it errors as soon as it stops
	 G			 ' start moving towards the stop
	 TWAIT			 ' wait until trajectory bit clears
	 'Note: you will error out against the hard stop which clears the trajectory bit.
	 ' Version 4.76 will jump to C1 on error automatically
	 T=-60			 ' go into torque mode to hold against hard stop (in case of bounce)
	 MT	
	 WAIT=1000		 ' let motor settle against hard stop
	 O=-100		 ' set position to some offset
	 OFF			
	 q=0
	 E=ee			 ' set error limit
	 AMPS=1020		 ' set allowable motor power
	 MP
	 P=0			 ' go to home position
	 G
	 TWAIT
	 PRINT1(#129,"f=0 ")	 ' tell motor 1, motor 2 is finished
RETURN

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 75

SmartMotor™ Interfacing

The following pages cover various schematics to help interface electrically to SmartMotors™

SmartMotor™ Connections:
Note: All Connections on the 7W2 combo connectors
are available on the DB-15 connector as well. They are
a direct internal

Connection on all standard D-Sub connector motors.

If 1 or less I/O Points and RS-232 Port Connection is
all that is needed, then the 7W2 connector is the only
connection needed to operate the motor.

Any additional I/O features are found on the DB-15
connector.

Please refer to other documentation on programmable
operation of I/O.

RS-232 Programming cable schematic to communicate with one motor via the main 7W2 Connector:

RS-232 Programming cable schematic to communicate with one motor via the DB-15 Connector:

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 76

SmartMotor™ Interfacing

RS-232 Serial Daisy-Chain cable to communicate to multiple motors via the DB-15 Connector

RS-485 Parallel Daisy-Chain to communicate to multiple motors via the DB-15 Connector

Note: All RS-485 networks require >= 400mVolt differential bias to work properly. The SmartMotor employs 5Kohm pull-ups on all I/O
pins, as a result, the pull down resistor shown is needed for proper operation. The shunt resistor may be required of the distance to the
last motor is significantly long.

Port E is referred to as the "A" or "Positive" side of the RS-485 bus while Port F is referred to as the "B" or "Negative" side of the bus.

Ideal cable would be dual twisted pair with shield. The shield should be tied to ground at one point only. The ideal point would be the host,
or if no host, the first motor. The shield should not be used as a ground reference or be tied to any more than one ground point. This would
cause noise to be induced into the bus.

If RS485ISO adapters are used, they make use of the Main RS-232 port. As a result, the bus needs to be powered from a separate 5VDC
source. If a motor is used as that source, opto-isolation would be defeated. The best means to power it would be from the host.

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 77

RS-485 Parallel Daisy-Chain to communicate to multiple motors via the DB-15 Connector

SmartMotor™ Interfacing

Note: The schematic shown is for an Encoder that can be powered
from the internal 5VDC supply of the motor. The motor can only supply
a maximum of 150mAmps.

Ensure the chosen encoder does not draw too much current.

If the external encoder has differential outputs, such as A(+), A(-) and
B(+), B(-), then just wire the plus connections to Ports A and B inputs
respectively. Maximum input frequency is 2MHerts.

Example Code to initiate Encoder Following:

MF4		 ' Interpolate incoming pulses in full
		 ' quadrature
MFMUL=4	 ' Multiply incoming counts by 4
MFDIV=7	 ' Divide incoming counts by 7
MFR		 'Calculate Mode-Follow-Ratio
G		 ' Begin following at that ratio

Side Note:
Ports A and B can also be used as a high speed input counter. Issue the command "MF0", and the counter will be set to zero.
The command "RCTR" will report counter value. The value will be total full quadrature counts received since MF0 was issued.
This method can be used to trigger events in one motor based off of positions from another motor.

Example:

MF0	 ' Set counter to zero
WHILE CTR<20000 LOOP	' Loop until count exceeds 20000
V=100000
A=100
MV
G	 ' Start moving in velocity mode

Connection to a PLC or stepper card output for running in Step Mode:
Note: Schematic shown is for sinking-output stepper controllers. Each I/O Port has
a 5Kohm Pull-up resistor that the step controller would need to pull down. Maximum
step input frequency is 2MHerts.

Example Code to initiate Step/Direction Following:

MS		 ' Set motor to Mode-Step
MFMUL=4	 ' Multiply incoming counts by 4
MFDIV=7	 ' Divide incoming counts by 7
MSR		 ' Calculate Mode-Step-Ratio
G		 ' Begin following at that ratio

Side Note:
Port A can also be used as a high speed input counter for parts counting Issue the command
"MS0", and the counter will be set to zero The command "RCTR" will report counter value.

The value will be total step pulses received since MS0 was issued. Port B will control whether
it counts up or down from zero.

Connecting an external encoder for External closed-loop operation or for electronic gearing:

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 78

SmartMotor™ Interfacing

Connecting 2 motors for Electronic Gearing:

Note:

Pin’s 8 and 9 are the inverted outputs of the motor’s
internal encoder. This is why A-out is connected to B
in and vice versa.

Otherwise the slave motor would spin the opposite
direction.

Software code still allows for reversal if hardware
change is not desired.

Ground reference is needed for proper operation.

See previous page for example program code.

Connection to Anilink Devices
(Both LCD RJ Connection and OPTO-1 Molex connection shown)

Note: Maximum distance for Anilink devices is 4 feet.
RS-232 communications is shown for clarity.
RS-485 communications is not available when Anilink Devices are used.

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 79

SmartMotor™ Interfacing

Typical Limit Switch Inputs:
As Shown, they are Active-High Asserted. This means when the limit
switches open or the connection breaks, the motor will stop.

This is because each input on the motor has a 5Kohm pull-up to
5VDC.

In Versions of firmware prior to 4.76, this requires the LIMH
command to make them active-high. Version 4.76 and later default
to active high.

Only 5VDC sensors or dry-contact switches can be used. If solid
state sensors are used, they should be NPN or "Sinking" type outputs
to pull down the 5Kohm pull-ups that are in the motor.

Simple Start/Stop Switch Input
Simple Start/Stop set-up using the "G-sync" function of Port G
for start/go and Limit switch input to Stop.

Note: By default, When Port G is grounded, the processor interprets
it as a "G" command being issued.

Port D limit input was used for this example. Either Port C or port D
could have been used to stop motion as long as the respective limit
input is enabled and active-high.

Start-E Stop Input

Similar to above, with Limit used as an E-Stop Enable.

Note: By default, When Port G is grounded, the processor interprets
it as a "G" command being issued.

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 80

SmartMotor™ Interfacing

Analog Input to a SmartMotor:
Any of the 7 I/O Ports can be read as a 10 Bit analog input.
The voltage range must be from zero to 5VDC (0-1023 value
returned).

Example: a=UEA would assign the analog value of Port E to
the variable "a". If a standard Potentiometer or linear adjustable
resistor is used, it should be 1Kohm or less in value to give the
best response. This is because the motor’s internal 5K Pull-ups on
each I/O port pin must be "pulled down" via the external analog
input. It is best to use shielded cable to keep noise levels to a
minimum.

Example code:

MV			 'Set to Velocity Mode
A=100		 'Set acceleration
WHILE 1		 'While forever
	 V=UAA*1000	 'Assign Port-A analog value to velocity
	 G		 'Make new velocity take effect
LOOP

Note: I/O Ports can be read as analog inputs even while being used as Digital Inputs or Outputs as seen in this next example:

Obtaining 2 functions out of One Input:
In this example, a spring-to-center toggle switch and an
8KOhm pull-down resistor is connected to Port F. Combined
with the 5K-internal Pull-up, the port will normally read a logic
high when read as a digital input. When read as an analog
input, it will read about 600 (0-1023 for 0-5VDC). If the switch
is swung to ground, it will read a digital zero. When swung
to 5VDC, it will read ~1023 on the analog scale. This means
a single Input pin could be used as a Jog Up/Down switch.
An added benefit is that if the connector comes off the motor,
you will know it because the input will always read high and
it’s analog value will be ~1023.

Example Code:

WHILE 1
	 IF UFI==0		 '	 If Port F is hard grounded
		 PRINT("Pushbutton pressed",#13)
		 WHILE UFI==0 LOOP
	 ELSEIF UFA<600	 ' 	 If Port F is biased between 5 and 0 volts
			 PRINT("Switch in upper position",#13)
		 WHILE UFA<600 LOOP
	 ELSE			 '	 If Port F is hard pulled to 5VDC
		 PRINT("Switch in lower position",#13)
		 WHILE UFA>700 LOOP
	 ENDIF
LOOP

Note: The above toggle switch could have been 2 separate momentary pushbuttons as well., But if someone were to press
both at once, the 5VDC supply would be shorted out. To avoid this, an extra resistor could be employed on the ground line.
(See next Example)

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 81

SmartMotor™ Interfacing

This is a twist to the last example.	 This time a simple
on-of switch is being used with the same 8K Pull-up.
Normally the Port will read about 600 as an Analog value.
If the Momentary pushbutton is pressed, it will read zero
and logic level zero. If the switch is opened, it will read
If the Toggle switch is spring return to the shown position,
then it is possible to detect if the connection came loose.

The 300 Ohm resistor is to prevent a 5VDC supply short
in case the pushbutton and toggle were pressed at the
same time. (See Note on previous example)

Push-Button and Toggle Switch into single input:

Example Code:

WHILE 1
IF UFI==0	 'if Port F is hard grounded
	 PRINT("Pushbutton pressed",#13)
	 WHILE UFI==0 LOOP
ELSEIF UFA<600	' If Port F is biased between 5 and 0 volts
	 PRINT("Switch in upper position",#13)
	 WHILE UFA<600 LOOP
ELSE		 ' If Port F is hard pulled to 5VDC
	 PRINT("Switch in lower position",#13)
	 WHILE UFA>700 LOOP
ENDIF
LOOP

Binary (4 Bit BCD) input control:
By using 4 inputs and a binary switch or 4 PLC outputs, up to 16 functions
can be achieved.

This could be 16 subroutine calls, 16 pre-set speeds or positions or
any of the above combinations. Via programming capabilities, It could
be a sequencing operation even controlled from another SmartMotor.

A common use for the other 2 I/O pins is to use them as Busy and
Fault outputs back to a PLC.

Example Code:

C4	'check binary switch, assign it to "d"
	 ' Note, For Versions >=4.76, d=U&511 will do the same as
	 ' all the following code.
b=UBI*2
a=UAI+b
c=UCI*4		
d=UDI*8	
d=c+d		
	 'd now contains the 4 bit value of the inputs
RETURN

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 82

SmartMotor™ Interfacing

Cascade I/O Fault Control
The following is a more complex arrangement of I/O handling that includes hard wired Fault protection, RS-232 and
RS-485 communications.

Notice how I/O is cascaded through from one motor to the next.
By using Port G’s function as a G-sync line, we can trigger moves on all motors at one time.

If a PLC or Host controller does the triggering, it will need conformation back that the motors are busy.

Port A and B are being used for this. Each motor sends a busy signal out of port A and into Port B of the next motor up the
chain. When all motors are completed, the first motor will signaCascade I/Ol the PLC.

Example:

'Slave motor code for sending Busy signal up the chain:
WHILE 1		 ' standing by to detect a move
	 IF Bt		 ' If port G was grounded, the Bt bit will go from 0 to 1
			 ' indicating Busy Trajectory
		 UAI=1			 ' Set Port A to 1
		 TWAIT			 ' Wait for move to complete
		 WHILE UBI LOOP	 ' Wait for Port B to go to 0, as fed from next
			 ' motor down. (last motor should omit this code)
		 UAI=0	' Set Port A to zero to trigger next motor up
	 ENDIF
LOOP

By utilizing the BRKC function of V4.15 and later firmware, Port C becomes a fault output. By feeding this into Port D with
Port D being defaulted as a limit switch, if any one motor faults, it will trigger a chain reaction and stop all motors immediately.

The RS-232 chain can be used for PLC, HMI, or PC connection while the RS-485 communications bus can be used between
each motor to allow isolated control from the host.

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 83

DE (Drive Enable) Option
All SM23XX and SM34XX motors come with a "-DE" option.
This option separates Pin 15 of the DB-15 connector from Pin A1 of the 7W2 connector allowing separate power
supplies to run the controller and Drive amplifier sections of the motor.

The connection between A2 (Power Ground) and pin 14 are maintained though. This means that if separate power supplies are
used, they cannot have their grounds tied together outside of the motor. To do so would cause a serious ground loop with drive
currents being placed on the controller ground.

The reason for the –DE option is 3-fold.:

It allows the controller to b "kept alive" under an E-Stop condition so re-homing is not necessary.1.	
The controller is protected from current surges caused by the drive amplifier (or other motors on the same supply)2.	
Better protection against Back-EMF voltage spikes. (they will not reach the controller).3.	
The drive Amplifier can take much higher spikes than the controller.4.	

SmartMotor™ Interfacing

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 84

Modes of Operation:
MP	 Set Controller for Position Mode, pending a G

MV 	 Set Controller for Velocity Mode, pending a G

MT 	 Immediately set controller to Torque Mode

MFx	 Immediately set Controller to Mode-Follow 		
	 (Electronic Gearing to follow External Encoder) 		
	 where x = 1,2,4

MS	 Immediately Set Controller to Step-Mode (Step
	 and Direction Input)

MC 	 Initialize Mode Cam awaiting a G

MTB	 Mode Torque Brake (Dynamically brake)

	 Note: MTB applies to PLS firmware only.

Position Commands:
A 	 Value of absolute acceleration

A=expression 	 Set Acceleration for Position and Velocity Modes 		
	 (unsigned 16-bit value)

V 	 Value of buffered requested velocity

V=expression 	 Set required Velocity for Position and Velocit Modes
	 (Signed 32-bit value)	

D 	 Value of buffered relative position, phase offset, and 	
	 [Dwell (F=16, F=128)]

D=expression 	 Set Relative Distance for Relative Position Mode,
	 (signed 32-bit value)
	 Set Phase Offset Distance In Electronic Gearing,
	 Set Dwell in Cam Mode (See F-Function Comands 	
	 for more)

P 	 Value of buffered target position	

P=expression 	 Set buffered target Position for Absolute 	Position
	 Mode (signed 32-bit value)

G 	 Start buffered motion profile or trajectory;
	 Initiate Mode Follow Ratio in Electronic Gearing
	 Initiate Phase Offset Move in Electronic Gearing
	 Initiate all buffered move profile values such as
	 Velocity, Acceleration, etc.

TWAIT 	 Halt program command execution until trajectory
	 completed

X 	 Decelerate to a stop using present buffered
	 acceleration value

S	 Decelerate to a stop using firmware fixed high rate
	 of deceleration

I 	 Index Pulse Position of Internal Encoder at last 		
	 point of capture

O=expression 	 Reset Origin in Position Register
	 (to a signed 32-bit value)

E 	 Value of Maximum Allowable Following Error in 		
	 Encoder Counts

E=expression 	 Set Maximum allowable Position Error 			
	 (unsigned 0-300000 max)

AMPS 	 Value of the power limit

AMPS=expression	 Set PWM Power limit, 0 to 1023 represents 0-100%
 	 allowable PWM

OFF 	 Turn off Drive Stage of SmartMotor™ servo

T 	 Value of Commanded Torque (Open-Loop
	 Commanded PWM to Drive Stage)

T=expression 	 Set torque magnitude and direction,
	 (signed values of -1023 to 1023)

External Encoder Motion Commands:
MF0 	 Reset secondary encoder counter to zero

MS0 	 Reset secondary encoder to zero

MFDIV 	 Value of Mode Follow Ratio Divisor

MFDIV=expression	
	 Set Ratio divisor value (16-bit signed value)

MFMUL 	 Value of Mode Follow Ratio Multiplier

MFMUL=expression
	 Set Ratio Multiplier value (16-bit signed value)

MSR 	 Calculate New Buffered Step Mode Ratio
	 values from MFMUL and MFDIV, pending a G

MFR 	 Calculate New Buffered Follow Mode Ratio
	 values from MFMUL and MFDIV, pending a G

MCx 	 Initialize Cam Mode awaiting a G,
	 where x =2, 4, or 8 times result

CI 	 Mode Cam Table Index Value, (present Cam
	 table pointer)

BASE=expression	
	 Cam Mode periodic encoder base where
	 SIZE < BASE <= 32767

SIZE=expression 	
	 Number of Array Points in Cam Table for Cam
	 Mode operation where 2 <= SIZE <= 100

CTR 	 External Encoder Position Register Value

CTR=0 	 Set External Encoder Register to Zero	

ENC0 	 Close Position Loop on Internal Encoder
	 (Default State)

ENC1 	 Close Position Loop on External Encoder
	 (Optional State)

Command Set Overview

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 85

Program Flow Structures:
Nesting program flow structure is permitted (6 levels deep)

IF expression ... 	 Beginning of "IF" code block

ELSEIF expression 	 Next "IF" test case, extended only if "IF"
	 above is false

ELSE 	 Remaining "IF" test case

ENDIF 	 End of IF, ELSEIF, and ELSE code block

SWITCH expression ...
	 ENDS SWITCH code block (resultant
	 value of expression stored in the variable
	 zzz)

CASE value 	 Individual SWITCH test case

BREAK 	 Jump to exit of WHILE or SWITCH

DEFAULT 	 If all SWITCH test cases false

ENDS 	 End of SWITCH code block

WHILE expression 	 WHILE code block

LOOP 	 End of WHILE code block

RUN 	 Executed the stored EEPROM program,
	 from the beginning

! 	 Suspend program execution until ANY
	 Incoming Communications is received

RUN? 	 Stop program executing at point of
	 command until RUN command is received

BREAK 	 Jump to exit of WHILE or SWITCH

GOSUBnnn 	 Execute subroutine at statement label nnn,
	 and then return to next statement

GOTOnnn 	 Jump to program statement label nnn

C# 	 Program Location Label for GOT and
	 GOSUB calls, C0 to C999

RETURN 	 Return subroutine to program address on
	 the stack (just below GOSUB call)

WAIT=expression 	 Suspend program execution for given
	 number of PID cycles, ~4069cyles = 1sec

Z 	 Perform Software CPU Reset of
	 SmartMotor™

END 	 Stop Program Code Execution

User Program EEPROM Read/Write Commands:

LOAD 	 Receive and Store into EEPROM a
	 compiled SmartMotor™ program file

UPLOAD 	 Upload User Program to host terminal

UP 	 Upload Compiled User Program and
	 Header file to host terminal

RCKS 	 Report Compiled User Program EEPROM
	 checksum

Variable/Data Storage EEPROM Read/
Write Commands:
EPTR=expression 	 Set user EEPROM memory pointer where n is 0
	 to 32255

VLD (variable, number)	
	 Load contiguous user variables from user
	 EEPROM number is the number of variables to
	 be loaded

VST (variable, number)
	 Store contiguous user variables into user
	 EEPROM, number is the number of variables to
	 be stored

Variables/System-Variables:
@P 	 Value of measured position

@PE 	 Value of measured position error

@V 	 Value of measured velocity

a thru z 	 32-bit Signed Integer value variables

aa thru zz 	 32-bit Signed Integer value variables,
	 (shares memory location with array variables)

aaa thru zzz 	 32-bit Signed Integer value variables,
	 (shares memory location with array variables)

ab[0] thru ab[200] 	 8-bit Signed Integer Array Variables,
	 (shares memory location with aa-zz, and
	 aaa-zzz)

aw[0] thru aw[100] 	 16-bit Signed Integer Array Variables,
	 (shares memory location with aa-zz, and
	 aaa-zzz)

al[0] thru al[50] 	 32-bit Signed Integer Array Variables,
	 (shares memory location with aa- zz,
	 and aaa-zzz)

Command Set Overview

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 86

Command Set Overview

System State Flags:
The follow binary values can be tested by IF and WHILE control flow
expressions, or assigned to any variable. They may all be reported
using RB{bit} commands and are ideal for Fault Detection and control
when operating via Serial Communications.
RW 	 Report Status Word (See Individual Status Bits Below)
Bt =1 if trajectory in progress,	 Bit: 0, value: 1
Br =1 if Positive Travel Limit Exceeded 	 Bit: 1, value: 2
Bl =1 if negative limit crash occurred 	 Bit: 2, value: 4
Bi =1 if new index report available 	 Bit: 3, value: 8
Bw =1 if Wrap Around occurred	 Bit: 4, value: 16
Be =1 if position error occurred 	 Bit: 5, value: 32
Bh =1 if Exceeded Thermal Limit 	 Bit: 6, value: 64
Bo =1 if Drive Stage is OFF 	 Bit: 7, value: 128
Bx =1 if Drive Stage is OFF 	 Bit: 8, value: 256
Bp =1 if on Positive Travel Limit, 	 Bit: 9, value: 512
Bm =1 if on Negative Travel Limit , 	 Bit:10, value:1024
Bd =1 if math overflow occurred, 	 Bit: 11 value:2048
Bu =1 if user array index error occurred, 	 Bit: 12, value:4096
Bs =1 if syntax error occurred, 	 Bit: 13, value:8192
Ba =1 if over current occurred,	 Bit: 14, value:16384

Bk =1 if EEPROM I/O error occurred, 	 Bit :15, value:32768

Other Status Bit Flags:
Bb =1 if comm parity error occurred	
Bc =1 if comm buffer overflow occurred
Bf =1 if comm framing error occurred
By =1 if step direction change overrun occurred (V4.40 only)

Reset System State Flag:
Za 	 Reset (Ba) over-amps flag bit
Zb 	 Reset (Bb) comm parity flag bit
Zc 	 Reset (Bc) comm overflow flag bit
Zd 	 Reset (Bd) math overflow flag bit
Zf 	 Reset (Bf) comm framing flag bit
Zl 	 Reset (Bl) negative limit crash flag bit
Zr 	 Reset (Br) positive limit crash flag bit
Zs 	 Reset (Bs) syntax error flag bit
Zu 	 Reset (Bu) array index error flag bit
Zw 	 Reset (Bw) position wrap flag bit
Zy 	 Reset (By) step dir bit (V4.40 only)
ZS 	 Reset all reset-able system flags

AniLink™ I/O Commands:
AIN{port}{input} value of 8-bit analog input
AOUT{port},{exp.8} output byte to analog port
DIN{port}{channel } AniLink digital input byte
DOUT{port}{channel},{exp.8} output digital byte value to AniLink
{port} is A, B, C, D, E, F, G, or H
{input} is 1, 2, 3, or 4
{channel} is 0 thru 63
{exp.8} i is 8 bit value: 0 thru 255

Report to Host Commands:
R{user variable} report user variable to host
User variable is a thru z, aa thru zz, aaa thru zzz, ab[0] thru ab[200],
aw[0] thru aw[100], or al[0]
R{X} report to host various commands (where {x} can be position co-
mands, variables, system state flags, communicationcommands, etc.)

Motor Over Travel Limit Commands:
UCP 	 Assign pin C to positive limit switch input,
	 (default state)
	 Note: Disable with either or UCO or UCI
UDM 	 Assign pin D as negative limit switch input,
	 (default state)
	 Note: Disable with either or UDO or UDI
	 The following apply to non-PLS firmware only:
LIMD 	 Makes Limits Directional.
	 A new occurrence of either limit still halts the motor.
	 A move begun on a limit is only allowed to move in
	 the opposite direction of the limit.
LIMN 	 Makes Limits Non-directional.
	 This is the defaultfor <=V4.40c.
LIMH 	 Set Limits to active High.
	 Motor will fault when limit goes high.
LIML 	 Set Limits active-Low,
	 Motor will fault when limit goes low
	 This is the default for <=V4.40c.
	 The following apply to PLS firmware only:
SLD 	 Disable software limits
	 (always disable prior to changing values below)
SLP=expression 	Assign value in encoder counts to Programmable
	 Positive Software Travel Limit
SLN=expression 	Assign value in encoder counts to Programmable
	 Negative Software Travel Limit
SLE 	 Enable software limits

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 87

Command Set Overview

Motor I/O Commands:
UG 	 Assign pin G to synchronous "GO" (default State)
U{pin}O 	 Assign pin to be an output
U{pin}=expression	 Set pin output latch to 0 or 1
	 where 0 is zero volts, and 1 is 5VDC
U{pin}I 	 Assign pin to be a general input
var=U{pin}I 	 Assign digital value of pin to variable (returns a 0 or 1)
var=U{pins}A 	 Assign 10-bit analog value of a pin to a variable
	 In all above cases:
	 {pin} is A, B, C, D, E, F, or G	
	 exp. is 0 or 1
	 var is any variable 	 a thru z,
		 aa thru zz,
		 aaa thru zzz,
		 ab[0] thru ab[200],
		 aw[0] thru aw[100], or
		 al[0] thru al[100]
	 Examples: UAI, UBO, c=UDI, UE=0, f=UGA

Brake Commands:
BRKENG 	 Engage the brake (requires hardware brake)
BRKRLS 	 Release the brake (requires hardware brake)
BRKSRV 	 Engage break whenever servo off
	 (requires hardware brake)
BRKTRJ 	 Engage break when trajectory is not running
	 (requires hardware brake)
BRKC* 	 Re-direct brake control from internal brake
	 pin to Port C
	 (V4.15b or higher firmware only)
	 UCO must be issued prior to this command
	 Automatic Functionality follows BRKTRJ or BRKSRV
	 commands as listed above

BRKG* 	 Re-direct brake control from internal brake pin to Port G
 	 (V4.15b or higher firmware only)
	 UGO must be issued prior to this command
	 Automatic Functionality follows BRKTRJ or BRKSRV
	 commands as listed above

BRKI* 	 Redirect brake control to internal brake control pin
	 (Default state)
	 (V4.15b or higher firmware only)

*Note: Not available with 440c firmware (i.e. SM2315D and SM2315DT)

PID Filter Commands:
PIDx 	 Set PID update rate where x=1, 2, 4, or 8	
	 (default is PID1)
KA 	 Value of buffered acceleration feed forward gain 	
	 coefficient
KA=expression	 Set buffered acceleration feed forward gain coefficient
KD 	 Value of buffered derivative gain coefficient
KD=expression	 Set buffered PID derivative gain coefficient
KG 	 Value of buffered PID constant coefficient
KG=expression 	 Set buffered PID constant coefficient
KI 	 Value of buffered integral gain coefficient
KI=expression 	 Set buffered PID integral gain coefficient
KL 	 Value of buffered PID integral term contribution limit
KL=expression 	 Set buffered PID integral limit
KP 	 Value of buffered PID proportional gain coefficient
KP=expression	 Set buffered PID proportional gain coefficient
KS 	 Value of buffered KS differential sample rate coefficient
KS=expression 	 Set buffered PID differential sample rate
KV 	 Value of buffered velocity feed forward gain coefficient
KV=expression 	 Set buffered PID velocity feed forward gain
F 	 Apply buffered filter coefficients to PID calculation

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 88

Command Set Overview

Communication Commands:
ADDR=exp set motor address between 0 and 99
BAUDX 	 Set baud rate to (x=2400, 4800, 9600, 19200, 38400 bps)
SADDRaddress
	 Set SmartMotor™ address, were address = 0 to 115
ECHO 	 Set Channel 0 (Main RS-232 Port) to Echo all received
	 data to the transmit line
ECHO_OFF 	 Turn off Echo function above, Default state is ECHO_OFF
SILENT 	 Prohibit outgoing messages onto Channel 0, (RS-232)
	 originating from within user program
SILENT1 	 Prohibit outgoing messages onto Channel 1, (RS-485)
	 originating from within user program
SLEEP 	 Prohibit SmartMotor executing received Channel 0
	 commands except WAKE
SLEEP1 	 Prohibit SmartMotor executing received Channel 1
	 commands except WAKE1
TALK 	 Permit outgoing messages originating from within user
	 program to Channel 0 (RS-232)
TALK1 	 Permit outgoing messages originating from within user
	 program to Channel 1 (RS-485)
WAKE 	 Permit any Received Commands on Channel 0 (RS-232) 	
	 to be executed
WAKE1 	 Permit any Received Commands on Channel 1
	 (RS-232) to be executed
 OCHN	 (type,comm,parity,bit rate,stop bits,data bits,
	 specification)
	 Open a communications channel where:
		 type is RS2 or RS4
		 comm is either primary channel 0 or secondary channel 1
		 baudrate 2400, 4800, 9600, 19200, or 38400 (bps)
		 data bits is 8
	 stop bits is 1
	 specification is C (for command) or D (for data)
PRINT()	 Print to Com Ch. 0 (RS-232 main channel)
PRINT1()	 Print to Com Ch 1 (RS-485)
PRINT{port}()	Print to AniLink™ port choice of A thru H
Note: See Animatics User’s Guide for more information on PRINT
commands
GETCHR	 Capture next character from Com Ch.0 input buffer
GETCHR1	 Capture next character from Com Ch.1 input buffer
LEN	 Number of characters presently in Com Ch.0 buffer
LEN1 	 Number of characters presently in Com Ch.1 buffer
Note: See Animatics User’s Guide for more information on PRINT
commands

Miscellaneous Commands:
CLK 	 Value of SmartMotor™ clock
CLK=expression 	 Set/Reset value of SmartMotor™ clock
TEMP 	 Value of Slave processor unit temperature
	 in degrees C.
	 (It must be assigned to a variable to be reported.)
UIA 	 Value of motor current in 100ths of Amps
	 (It must be assigned to a variable to be reported)
UJA 	 Value of motor DC bus Voltage in 10ths of Volts.
	 (It must be assigned to a variable to be reported)

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 89

FAQ

Downloading and Uploading Programs to SmartMotor•	 s™
I/O Handling•	

Power Supplies and BackEMF Subjects•	 :
Serial Communication•	 s
Tips and Tricks to Better Code and Motor Performance:•	

How do I download Programs to SmartMotors without using SMI?

By using the "LOAD" command you can download from any dcontroller/HMI/PLC or PC based program capable of storing an
ASCI text file. For any given motor that is actively addressed, (i.e. you are talking to it and it responds) If you issue the LOAD
command to the motor, it immediately goes into a memory-write mode while checking all incoming data. Every ASCII character
that is received after the LOAD command is issued goes directly onto the Program EPROM. To terminate the LOAD command, the
last characters to send are 2(two) hexFF characters. The hexFF characters tell the motor that it is the end of the file and to drop
back into regular command mode.

Details on the downloadable file: When you compile an SMS file with the SMI software, it creates an SMX file extension with the
same name in the same directory. This is the file you need to download to the motor. So basically here is what you should do:
Do an initial download of your program to the motor from SMI on some other machine. Issue the "RCKS" command. This is the
"Report Checksum" command.

It will respond with a string in the form of:

RCKS 000000 0000EB P
where the 000000 0000EB will be different than shown and represent a unique 2-byte checksum to any given program. The P at
the end will be either a P (passed) or F (failed).

Keep this number in your own program/PLC that will do the downloading.

Store the SMX file for downloading.1.	
Store the string received from the RCKS command above as well.2.	
Establish serial communications with the motor.3.	
Issue RCKS command4.	
If it does not match the stored checksum number:5.	

Open the smx file.•	
Issue the LOAD command•	
Start sending down all characters in the smx file from beginning to end.•	
When the last character is read from the file and sent•	

to the motor then send 2(two) hexFF characters to the motor. Issue RCKS command again. If it comas back with the 6.	
stored string (with the "P" at the end) then the download was successful.
Issue "RUN" to see if it works as expected.7.	

Reasons for unsuccessful download:

Noise on serial porta.	
loss of connection during download.b.	
failure to send the two hexFF’s before power-down.c.	
The SMX file as SMI compiled it was altered in some way.d.	

Note: If you were to open an SMX file in Note Pad to look at it and then save it, Notepad will automatically add CR(13) carriage
return characters at the end of each line it sees. The resultant file will not work. Each carriage return would have to be stripped
back out prior to download. So do not alter the smx file in any way from how SMI generated it.

Downloading and Uploading Programs to SmartMotors

Q
A

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 90

Downloading and Uploading Programs to SmartMotors

I have multiple motors on a network. How can I download to all or any of the motors I choose?

The SMI software allows you to globally download the same program to all motors or to download to a specific motor based on it’s
address. Using the older SMI software (SMI1), click on the "D" icon at the top. the pop-up window will ask you to set the default
motor address.

Type in the address of the motor you wish to download to and that will be the motor that gets the program when you click on the
"T" icon at the top. the "T" icon both compiles and transmits the program.
Note: It also saves the program, so if you are testing changes, I would recommend you save the file under another name first. To
globally download the same program to multiple motors, go to the Communications setup menu and select transmit setup. then
select to download to all motors.

In SMI2 (The new version Windows based software, if you right click on the program you are editing, you will see a pop-up menu
with an option to compile and transmit the program. When you click on it, SMI will prompt you for what motor to download to.
Choose accordingly and the jog will be done for you.

While downloading to one motor on a chain, I lost communications. When I reestablished communications,
SMI found one less motor on the chain than was actually there. What happened?

Let us suppose you have 4 motors on a serial daisy chain. You begin download a program and for what ever reason, a glitch occurs
with the serial line. Here is what can happen: SMI issues "SLEEP to all other motors so they will not respond to any commands.
It then issues "LOAD" to the motor to be downloaded to. That motor is now in ECHO mode, meaning it will echo all incoming
characters to downstream motors (or the Host) and yet is also in a memory-write mode. That motor will stay in this mode until it
receives a null terminator telling it the download is complete. If for some reason communications from the host is interrupted, the
SMI software will throw an error to the effect of "No response received". You then will attempt to regain communications. At this
point, the motor that was receiving the program is still in it’s memory-write mode. It has yet to see any null terminating characters
but yet still echoes through any incoming data.

As a result, the host will not see the motor. It will address all other motors and the chain will have appeared to lose a motor. Newer
versions of SMI1 and SMI2 have been updated to check for this, but if you are writing your own download routine from VB, C++,
a PLC, etc..., then you need to adjust accordingly for this possible condition. to avoid this, when attempting to address a serial
daisy chain, issue 2(two) hexFF characters when setting the ECHO commands so as to end the memory-write state of any motor
accidentally left in that condition from a prior incomplete download.

The LOAD command was issued to the motor receiving the program. The motor went into

Why do I get a pop-up that says: EPROM Locked or Missing when I try to download a program?

This only occurs under the following conditions:

The EPROM is locked or missing in older Molex styled motors with external EPROMS.1.	
You are attempting a download to a "Plus" version firmware motor that is in a faulted condition. While faulted, the newer plus 2.	
version firmware will not allow a program to run. When SMI attempts a download, it first sends a blank test program that it
trys to run. If the program does not run, then SMI assumes the EPROM is either locked or missing. SMI2 does not pop up this
message because it knows how to test for it ahead of time.

Why will SMI2 not let me download to a motor that is moving or running a program?

Due to safety concerns, the new SMI2 software forces you to turn off motor holding current or stop a running program prior to
download to prevent possible unexpected motion. Example: Let’s suppose you have a program that places the motor in Velocity
mode or Torque Mode. Then you try to download without first tuning off the motor. Travel, it will crash into the end stop while
downloading. So, for safety sake we want to ensure the motor is in the OFF condition.

When I start a download, the motor stops doing what it was. Why?

When SMI starts a download of a new program, it issues the END command to stop prior code form running. This is to prevent
processor memory pointer errors while the EPROM header portion is being re-written. It is also for safety.

A

FAQ

Q

Q

Q

Q

Q

A

A

A

A

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 91

FAQ

Downloading and Uploading Programs to SmartMotors™ (continued)

Is there a way to have just one program in all motors instead of downloading separate programs to each
motor?

Yes. This is more of a programming methodology. Write a single program that tests for motor addresses. And on this test, it tells
each motor what to do. Here is an example: This one program would be downloaded to all motors. the program.

ADDR=1 		 'Change address for each motor as needed prior to download
a=ADDR 	 'Set the variable "a" to the motor address.
SWITCH a
	 CASE 1 	 ' In the case of motor 1
	 END
	 BREAK
	 CASE 2	 ' In the case of motor 2
	 GOSUB20	 ' run subroutine 20
	 END
	 BREAK
	 CASE 3	 ' In the case of motor 3
	 GOSUB30 	 ' run subroutine 30
	 END
	 BREAK
ENDS
END
C10
		 ' Place Motor 1 code here
RETURN
C20
		 ' Place Motor 2 code here
RETURN
C30
		 ' Place Motor 3 code here
RETURN

Uploading Overview:

There are two types of Uploads.

Issue the command upload This will cause just the "code" portion of the program to be uploaded. You will notice all 1.	
comments and empty spaces have been removed from the prior download When you "receive program from motor" in SMI,
it issues the UPLOAD command.
"UP" When "UP" is issued, the program in it’s entirety will be uploaded including all header file portions of the code. You will 2.	
see the top of the program includes a lot of extra numbers. Many of them are memory pointer "Holders" to tell the processor
where to go and how much memory to allocate. The checksum is also stored in the header portion of the file. If you issue
RCKS and notice the checksum that is returned, you find a matching string near the front of the header file. This is the
stored checksum in the downloaded program.

Is there a way to prevent someone from uploading a program?

Yes. You can protect your program from being seen or copied by adding the following command to the top of it LOCKP. The
LOCKP command is a means of locking the program. It does not prevent a user from downloading a new program, but it does
prevent them from seeing the program you have downloaded.

Q

Q

Q

A

A

A

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 92

Downloading and Uploading Programs to SmartMotors™ (continued)

How many times can I download a program to a motor?

The chip manufacturer gives a limit of 100000 writes to the EPROM. Tests have been done to in excess of 4 million writes. It is
not recommended to continuously re-write a program to a motor. It is far better to have the same program reside in the motor, but
instead, change parameters and run-time variables as needed.

Can one SmartMotor download a program to another SmartMotor?

No. It is beyond the scope of design to do this. Downloading is better handled where files can be easily stored and retrieved for
such use. SmartMotor programs can not really store other program header file information in them.

I/O Handeling

How many I/O are there on each motor and how can they be used?

There are 7 universal I/O on each SmartMotor and the RTC3000. They are each labeled as Ports A through G. Note: Port G Digital
I/O port is not available on the RTC4000.

Each of the 7 I/O (ports A-G) are 5VTTL and can be assigned as either inputs or outputs. Each I/O port also has a parallel 10 Bit
analog input tied to it. For 0-5VDC it will return 0-1023. See the SmartMotor Training Overview Document on this website and read
through the section labeled "I/O and Control at a Glance"

Since the I/O is non-isolated 5VTTL, are ther any options for 24VC I/O?

Yes. There are a few options: Animatics provides cables with built in 5V to 24V isolated logic circuits right in the connector hood.
This allows the user to have a choice of either 4 Inputs and 3 Outputs or 5 Inputs and 2 Outputs at 24VDC. They can be set as
sinking or sourcing. The partial Part numbers are CBLIO43 or CBLIO52 and can be purchased in lengths from 3 to 10 meters.

The DINIO7 is a Dinrail mount breakout board that also provides a means of isolation using Industry Standard Opto-22, Gordos,
or Grahill I/O modules such as ODC, IDC, OAC and IAC series. The DINIO7 also allows interconnection to other motors and their
I/O via a built-in back plane.

Is there any Expanded I/O option?

Yes. Each motor has the ability to control expanded I/O via the Anilink protocol or RS-485. There are several Digital and Analog
expansion option that allow up to a maximum of 64 channels of expanded I/O. In each case, Ports E and F are used to communicate
with the Anilink Products.

Also available is the DINRS-485 I/O card. Each card is a din-rail mount 16 channel card with 8 24VDC sourcing inputs and 8
24VDC sourcing outputs. All I/O are optically isolated. Up to 200 DINRS485 cards can be on a single RS-485 bus controlled by
SmartMotors. The outputs are short circuit protected.

Are the I/O pins sourcing or sinking? (PNP or NPN)?

A strait answer is neither. They are actually CMOS compatible totem-pole outputs with the ability to be read as inputs. What this
means is, that when any given I/O pin (Port A through G) is set as an output (via UAO through UGO commands), and then is set
to logic 1 or 0 (via UA-1 or UA-0 for example), the CMOS totem pole MOSFETs either hard drive the output pin to 5VDC or 0VDC.
As a result, they are not open-collector outputs.

They BOTH source AND sink. However: when set as inputs via UAI through UGI commands, is nothing is connected to the I/O
pin at the connector, the input will appear as a logic level 1 (5VDC). This is because ALL I/O pins have an internal 5KOhm pull-up
resistor tied to them.

What type of electrical potection/isolation does each I/O pin have?

Each I/O pin has a 100 Ohm series current-limit resistor tied to a 5.6VDC over-voltage limiting zener diode. The user ties into
the 100OHm resistor directly. The connection between the 100Ohm resistor and zener diode ties in directly to the CPU pin. This
is why the motors are limited to 5VTTL I/O logic levels only. Animatics does however, provide 24VDC I/O adapters and adapter
cables for converting the 5VDC I/O to optically isolated 24VDC logic for connection to PLC’s and other equipment. Please visit the
Animatics website and search under Cables and accessories for the CBLIO-43 and CBLIO-52 cables: http://www.animatics.com/
catalog_pdf/51.pdf

FAQ

Q

Q

Q

Q

Q

Q

Q

A

A

A

A

A

A

A

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 93

FAQ

I/O Handling (Continued)

When set as an output, how much can the ins source or sink?

They source ~4 to 5mAmps max when set to a logic level 1.

They can sink ~12mAmps when set to a logic level zero.

Sample code:

UAO	 'set port A as an Output
UA=1	 'set to 5VDC
UA=0	 'set to zero VDC

Note, If you want to be sure the Output is set to the proper level immediately, then set it’s value prior to setting it as an output:

Example:

UA=1 'preset to 5VDC
UAO 'et Port a as Output

Can I set the output state prior to assigning an I/O pin as an output?

Yes. Example:

UA=0	 'set port a output state to logic zero (0VDC)
	 'at this point, port A is still an input port.
UAO	 'set Port A as an output Port.

'It will change to being an output and immediately be at ZeroVDC. In fact, doing it by this method allows for slightly faster response
and a safer means of control.

How do I poll inputs fast?

If the input can be polled while the motor is not required to be moving, there is a simply little known trick you can do to greatly
speed up I/O polling. Issue PID8 just prior to the polling code and then issue PID1 just after completion. This will cause the CPU
to dedicate more time to program code and less time to PID update rate.

Example:

PID8			 ' slow down PID
WHILE UAI LOOP 	 'while port A is not grounded loop
			 'do what ever here...
PID1	 		 'return PID to normal

Power Supplies and BackEMF Subjects

What is better? Linear or Switcher Supplies?

It depends on the application. Typically speaking linear supplies are better suited for inductive loads. Motors are inductive loads.
Linear supplies can handle high current surges typically caused by starting and stopping of servo motors.

However, linear supplies have what is known as voltage-droop. This is characteristic of voltage dropping down with an increase
in load. Typically, unregulated Torroidal transformer supplies will drop 4 to 7% and E-Core types (the big square transformers) are
>10%. Switchers have no voltage droop until they reach maximum load. Then they just drop completely to zero volts. However,
since they maintain a tight control over voltage up to the trip point, they can typically aid greatly in reaching maximum speed and
acceleration of a given servo. However, the Switching supply must be sized for the maximum expected peak current draw of the
motor system. A linear supply only needs to be sized for continuous load. Linear supplies have a large capacitance to supply much
higher current surges when needed. So this is more of an application specific question.

Q

Q

Q

Q

A

A

A

A

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 94

Power Supplies and BackEMF Subjects (Continued)

How do I protect against BackEMF?

Short Answer: Don’t back-drive the motor.
Problem is, back driving the motor isn’t the only means to produce Back EMF. Read the FAQ on "What is BACKEMF and where
does it come from".

The best means to protect against Back EMF are to use a shunt such as the active 48VDC 100Watt shunt supplied by Animatics.
It drops a 100 watt load onto the bus any time bus voltage exceeds 49.5VDC. It removes the load when Bus voltage goes back
down below 46 VDC.

It will work with Switching or Linear supplies as long as no-load voltage does not stay above 48VDC. Otherwise the shunt will be
on all the time. Another method of protection is to use a mechanical break controlled by the Break commands in the motor. The
motor can respond to a fault and send a signal to the break within 250useconds to help hold the shaft from back driving. None of
these ideas helps against hitting a hard stop. Please read the FAQ on Back EMF for more.

What is Back EMF and where does it come from?

Back EMF:

Back EMF is the voltage generated when a rotor is moving within the stator of any motor. It is literally the motor acting as a
generator. There is a common rule that Back EMF or voltage generated is proportional to Velocity. This is true in a constant velocity
condition only. Back EMF is actually proportional to the rate of change of magnetic flux (magnetic field strength) inside the stator
windings of the motor. The faster the rate of change, the higher the voltage rises. In other words, RPM of the motor shaft does not
have to be that high to have very high voltages created.

Here is an example:
Take any relay coil or solenoid valve coil in a 24VDC system. Then it is energized, the magnetic field pulls in the contactor or pilot
valve. The magnetic flux reaches saturation and a DC electromagnet is formed. When the power is removed from the coil, the
magnetic flux rapidly collapses because there is no forward voltage to maintain it. Since the circuit is not electrically open, there
is nothing to prevent the magnetic flux from collapsing rapidly at a hyperbolic rate.

The result is something called "inductive-kick". This kick or spike in voltage for a 24VDC coil can reach very high voltages and
currents on the order of 100 times that of the original applied voltage, i.e. 2400VDC!. This is why it is very common to place
reverse polarity diodes across relay coils and solenoid valve coils. It protects the system from high voltage spikes. The same
thing occurs when a motor hits a hard stop. Suddenly, the rate of change of magnetic flux in the stator windings skyrockets
upward because the rotor stopped moving. This sudden change causes an excessive voltage and current spike in the controller
and can damage components.

Now: wheat can we do about it: Practically speaking, not much. This is similar to a car crashing in to a brick wall. If the passengers
are belted in, they may survive, but the car will sustain unavoidable damage due to the rapid change in speed. (Infinite deceleration
to zero speed). No amount of "practical" mechanical design for a typical car will save it from damage when it hits the brick wall.
Practical design, means, yes, you could make that car into a large bulky tank that would not get hurt, but then the car would be very
heavy, with little space for passengers and be very slow and bad on fuel consumption. This is not practical. The same applies to
motor drive design. We could design the drive stage to be able to take the hit of a fast hard stop. But the drive stage would be very
large. The controller would have a lot more components in it and the practicality of it would be diminished. The motor would grow
in size for the same torque output to 3 times larger. This is just not practical.

What concerns are there with maximizing voltage on the supply?

Power supply Voltage Levels:
The higher the voltage, the fastest the motor can move and the faster it can accelerate. This is a good thing. But in conjunction
with that, the higher the voltage, the closer to a peak voltage for over-voltage break down of the controller. Also, the higher the
voltage, the faster a rate of change of current can occur. It is a risk with any application to get faster response by moving towards
a higher voltage.

Typically speaking, it is the dynamics of sudden changes that increases risk by a "x^2" factor whereas the continuous load risk is
only a direct ratio increase. This is because rate-of-change in current is proportional to acceleration which is the square of velocity,
i.e. x^2. For safety sake, a 42VDC supply for a 48VDC system gives good margin with little speed losses.

FAQ

Q

Q

A

A

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 95

Power Supplies and BackEMF Subjects (Continued)

I was told the motor failed due to over voltage, but I never back drove it or ran it fast.....
HARD STOP CRASHES:

See the FAQ on BACKEMF and what it is for more:

Hard Stop Crashes: The best recommendation for preventing damage to the motor/controller in the case of hitting a hard stop is
to place a limit switch near the hard stop that trips the motor off line just prior to hitting the stop. The best way to prevent it beyond
that is to prevent the cause of hitting the hard stop in the first place.

If this is due to jogging the motor in Velocity mode and not letting of the jog switch in time, then jog in position mode instead and
use the "X" or "S" command to stop the motor when the jog switch is released. In any case, much care should be taken to be sure
the motor is not intentionally or unintentionally allowed to hit a hard stop while under normal speeds and load conditions.

How do I size Power Supplies?

The quick answer is "more is better".

First be sure you have the correct motor for the job. Once that has been down, take the nominal power rating for that motor and
you should size a LINEAR supply to provide about 10% more to allow for longer sustained current loads. Any LINEAR supply will
typically provide more than enough peak current. This is where sizing gets tricky with Switch-Mode Power supplies. "SWITCHERS"
typically come with some rated voltage and current.

For Example: 48VDC at 6Amps.

Well, that is it....... They can provide 48VDC nailed to the wall all the way up to 6Amps, but any more current and the power supply
will drop out to zero VDC and typically reset. So any time you wish to use Switchers, you need to take the peak expected load of
the motor and size the switcher’s continuous rating for that.

As a rule of thumb:
Any 23 Frame SmartMotor™ "can" pull as much as 12 Amps instantaneous. Most 23 frame SmartMotors will not pull more than
about 9Amps instantaneous. A 10 amp switcher can supply any 23 frame motor for MOST applications.

A 34 frame motor, forget it, you need 20Amps continuous rating to be sure you will not get a tripped power supply. 34’s can pull as
much as 40Amps or more for a few milliseconds. so as originally stated: "Bigger is better" especially when it comes to switchers.

Serial Communications

What is meant be ECHO and ECHO_OFF?

There are two states for the main RS-232 communications

serial port:

ECHO
And
ECHO_OFF

Upon Power-up, the motors default to the ECHO_OFF state. This means that for any serial communications coming in the receive
pin of the RS-232 port, they will not "echo" them back out to the transmit port. If you have more than one motor on a serial daisy
chain, the only means to get messages or commands to downstream motors is to have them in the "ECHO state.

When the SMI software is told to "address the motor chain", it automatically turns on the ECHO state for each motor it find. From
that point forward, any serial data that comes into the receive pin will be "echoed" out to the transmit pin. This will allow downstream
motors on the daisy chain to receive serial data as needed. Otherwise, communications could not be established through the entire
chain.

FAQ

Q

Q

A

A

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 96

Serial Communications (Continued)

What does it mean when the motors are in the "addressed" state or "de-addressed" state?

It is important to understand addressed or de-addressed states of SmartMotors™. These states determine whether or not a
SmartMotor will respond to commands.

Lets assume for example that we have 5 motors on a communications network.. All of them have programs downloaded with
addresses 1-5 respectively via the SADDR command.

On Boot-up all are ready to listen. They will respond to either a globally addressed command or a specific motor will respond to a
specifically addressed command. Once a specific address is sent out on the line, that motor will be in the "addressed" state and All
other motors will be in the "de-addressed" state. What this means is that from that point on, any command sent

out to the motors without an address proceeding it, will be acted upon only by the motor in the addressed state. All other motors
will basically ignore anything received.

By sending out a command preceded by the global address (hex80 or dec128), all motors will be placed into the "addressed
state and will remain in that state until another specific address is transmitted. Under the above case of 5 motors addressed 1-5
respectively, if a hex89 for example or any other address outside of hex80-hex85 is sent, all motors would become "de-addressed".
No motor would respond to any command until an address within the range of motors on the line is received.

What is the default boot-up state of the communications Ports?

SmartMotors default to 9600 Baud, no parity 8 data bits and 1 stop bit. (9600,N,8,1). All SmartMotors boot up in ECHO_OFF mode
with global address zero. This means they will respond to globally addressed commands, i.e. commands proceeded by dec128
or hex80.

They also boot-up in the "Addressed" state. this means that even if no address bit has been seen by the motor since power-up and
a valid command is received, the motor will take action on it.

Note: With in the first 500msec’s or so of power up, if a SmartMotor has not received any serial communications, it will begin
executing code previously downloaded to them from the top down. If it does receive any serial communications within that time
period, the processor will not run or execute any downloaded code. This allows a user to re-gain control of a motor with a bad
program in it.

I have a motor that will not communicate no matter what I try. What should I do?

It is possible to unintentionally write and download a program that will lock up the CPU or prevent serial communications. If you
power it up and there is one or more LED lit up, then try the following: Isolate the motor by itself such that you have a single motor
power and communications cable between the motor and the PC. Connect the motor to the PC serial Port, but DO NOT power up
the motor. In other words, have the power supply either disconnected or turned off. Then Start up the SMI software and click on
the TOOLS drop down menu.

Under there, click on "Communications Lock-up Recovery." A pop-up window will tell you to do what is described above. Then click
next. The Lock-up recovery utility will begin transmitting multiple "E" characters to the motor. It will tell you to power-up the motor
at this point.

Then it will wait about 1 second and attempt to establish communications. If it does establish communications, it will tell you
and then prompt to either clear the program or upload the program. At this point, it is advisable to clear the EEPORM so as to
down-power reset the motor and reestablish communications normally. This way you will know if it was just a program issue or a
hardware issue.

If you apply power and there are no LED’s lit up on the motor, then there is a major problem with it electrically. It will have to be
sent back for repair.

I downloaded programs to each motor on the serial chain, but after a downpower-reset,
I could not communicate with each motor. Why?

If you have multiple motors on a single serial daisy chain, they need to be in the "ECHO" state to be able to communicate with each
one. See the FAQ on ECHO and ECHO_OFF for more information.

If you reset the motors after downloading the programs, make sure they were not re-addressed incorrectly, i.e more than one motor
with the same address.

FAQ

Q

Q

Q

A

A

A

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 97

Serial Communications (Continued)

I have 4 motors on a serial chain, but can only find 3 of them when I try to detect or address them. Why?

There is a case where it is possible to "look over" one motor in a chain. Lets suppose you are downloading a large program to one
particular motor. If you get a noise glitch or lose power to 1 of the other motors while doing so (but not the one you were downloading
to), the motor being downloaded to will be stuck in EPROM write mode. It will be expecting two hexFF terminators to know when
the end of the program load has occurred. While in the download EPROM write state, it will ECHO every incoming character to the
transmit port. Upon re-establishing communications with the SmartMotors™, that motor will remain in the download state and not
answer any commands. As a result, it will be looked over as if it were not even there. The only way out of this condition is to fully
down-power all motors and then re-establish communications.

Occasionally I lose communications and don’t know why. what could be causing this?
This is a vague question. To better handle it, more detail would be needed. Here are some things to consider:

Shielding and Grounding must be done properly to insure good signal integrity. 1.	
Long character strings should be avoided. the receive buffer is only 16 bytes long.2.	
Never use the shield as the ground reference connection for RS-232 or RS-485.3.	
Make sure there are no non-terminating strings being transmitted. If a string is not followed by a carriage return or space 4.	
character, the motor will hang indefinitely waiting on the terminating character. It is done this way to allow priority to the
serial ports over any downloaded program execution.

My laptop does not have a serial port. What USB to Serial Adapters do you recommend?

There are several available but few good ones. Do not get one that says "Serial to PDA" adapter. They don’t work.

Tried and true good one from Keyspan: 	•	 http://www.keyspan.com
Available at CompUSA: 	•	 http://www.compusa.com
Saeligue Corp has the FTDI chipsetl: 	•	 http://www.saelig.com
Low cost unit that has worked well: 	•	 http://store.yahoo.com/gomadic-new/onepiusbtors.html
		 It is identical to one available at Fry’s Electronics out west.

In any and all cases, it is highly recommended to do the following to insure good sustained communications: If running Windows:
Open up the Device Manager. Search fro the USB to RS-232 adapter under Ports Serial to PDA then open up the properties
for it and look for "Advanced settings if available. Reduce the buffer size to the smallest value available and reduce time-out’s
to minimum as well. This will prevent Windows from going to slow at getting data from the virtual receive buffers used with USB
devices.

How far can I transmit on RS-232 or RS-485?
The Real Story:

There are a lot of people that give a wide range of answers.

Here is the real deal:
"RS" in the RS-232 and RS-485 specification means "Recommended Standard". Not every company or chip manufacturer
actually meets the "RS"....

The IEEE spec. says RS-232 single ended signal is SUPPOSE to be +/-12VDC or a 24VDC swing from logic zero to logic 1.
The spec. for RS-485 is +/-5VDC Differential. By voltage levels, RS-232 will logically be able to transmit much further. By noise
immunity, a differential signal should be able to reach it’s destination "cleaner". But the real side is this. A clean whisper can’t be
heard a mile away. But a load guttural voice can. So in reality, RS-232 can transmit further, but RS-485 transmits cleaner.

Also note, the higher the voltage level, the higher the induced noise must be to overcome the signal. So RS-232 isn’t so bad after
all. As far as actual distances go: There are applications out there running 250 feet on RS-232. RS-485 just can’t drive the cables
well enough to go beyond 100 feet without loading problems. Also, RS-485 is a parallel bus. The more motors you add, the shorter
the over-all distance due to bus loading. RS-232 is serial. Therefor, one motor transmits directly to only one receive buffer. This
means compounded bus loading does not occur. This is another reason RS-232 can actually transmit further.

Q

Q

Q

Q

A

A

A

A

FAQ

http://www.keyspan.com
http://www.compusa.com
http://www.saelig.com
http://store.yahoo.com/gomadic-new/onepiusbtors.html

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 98

FAQ

Serial Communications (Continued)

I can’t get my RS-485 bus to work at all. What should I look for?

RS-485:

If RS-485 is used, all motors must be in ECHO-OFF mode. RS-485 is a parallel communications network. If any motor was to echo
out commands received, it would cause all motors or any other devices on the network to get hit with the same data.

Note: SmartMotors™ use 2 wire RS-485 standards. This means line biasing determines whether or not the motor is in transmit
mode or receive mode at the hardware level. To insure motors do not hang up in the transmit mode, there must be a minimum of
a 200mVolt differential between RS-485 A and B channels.

 This is easily achieved by placing a pull down resistor of approximately 500 Ohms from the B channel to ground somewhere on
the RS-485 network.. All SmartMotors have a 5Kohm pull-up resistor on both A and B channels already. The 500 Ohm resistor will
provide enough biasing needed to make the hardware default to the receive state. If there are long distances between motors, it
may be necessary to provide a shunt resistance across channels A and B. A 200 Ohm resistor wired from A to B at the remote end
of the RS-485 line should provide ample voltage drop for needed biasing.

If the above electrical rules are not applied, communications cannot be guaranteed to work. Note: Resistor values above are
approximate. The actual values needed may vary depending on communications line impedance due to things such as cable
length and the number

How can I address motors on an RS-232 serial chain without using the SmatMotor Interface software?

Addressing SmartMotors from a Host PC or other Serial Device:

Note: The following only applies to an RS-232 serial daisy chain where the motors do not have programs downloaded with
addresses in them. It will not work on an RS-485 network. Motors must be pre-addresses in downloaded programs for an RS-485
networks to work at all. Since SmartMotors without addresses default to address zero (hex80 or dec128), a sequence of commands
must be issued in proper order to achieve addressing of the SmartMotors. SmartMotors without programs downloaded into them
will not retain addresses from this procedure upon loss and return of power!

The following is an example sequence of addressing 3 SmartMotors from the SMI software terminal screen.

Assumptions are as follow:

Host PC is set up for 9600 Baud,N,8,1 since this is the power-up default for SmartMotors.1.	
Three SmartMotors are wired in serial daisy chain with Tx of Host PC wired to Motor-1 Rx, Motor-1 Tx wired to Motor-2 Rx, 2.	
Motor-2 Tx wired to Motor-3 Rx, Motor-3 Rx wired to Host PC Rx. (Tx is RS-232 transmit, Rx is RS-232 Receive)

 	

0ECHO_OFF 		 Places all motors in echo off
0SADDR1 		 Set first motor to address 1
1ECHO 			 Set it to echo mode so the next motor will be able to receive commands
1SLEEP 		 Set it to sleep mode so it will not act upon following commands
0SADDR2 		 Set next motor to address 2 and repeat sequence
2ECHO
2SLEEP
0SADDR3
3ECHO
3SLEEP 	
1WAKE 			 Set all motors to wake status
2WAKE
3WAKE

Note: SMI Software automatically replaces leading numbers in commands with a decimal offset of 128. In other words,
0ECHO_OFF resulted in "(dec128)ECHO_OFF" being transmitted.

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 99

Serial Communications (Continued)

I can’t get my RS-485 bus to work at all. What should I look for? (Continued)

This is the equivalent from any other software source:

(dec128)ECHO_OFF
(dec128)SADDR1
(dec129)ECHO
(dec129)SLEEP
(dec128)SADDR2
(dec130)ECHO
(dec130)SLEEP
(dec128)SADDR3
(dec131)ECHO
(dec131)SLEEP
(dec129)WAKE
(dec130)WAKE
(dec131)WAKE

Note: (hex80-83) is the same as (dec180-313), All lines must be terminated with either a carriage return (dec13) or space
character.

Tips and Tricks to Better Code and Motor Performance:

Running code on power-up:

On power-up, all SmartMotors™ and ServoSteps start running their program. They run code from the top down in order as the code
is written. You can issue the command "RUN?" to prevent this. The code will stop on the line "RUN?" until the motor specifically
receives "RUN" via serial communications. This can be via the primary or secondary port.

Note: the RUN? Command can be placed ANYWHERE in code and have the same effect. It is basically a "pause here until RUN
is received" command. But when "RUN" is received, the code WILL begin from the top down again and then jump beyond the
"RUN?".

Serial Port Noise: how can you detect it?

A Little known command: "!", that is the exclamation point symbol by itself: !

If it is placed somewhere in code, the code will stop there until ANYTHING is received via serial communications on ANY port.

Example:

WHILE 1==1	 'while forever
!		 'wait here until anything comes in via
comms.
PRINT("noise",#13)
LOOP

Now so much as a noise glitch hits the serial receive buffer, the motor will print noise out the port. Keep in mind, anything
deliberately sent will cause it to print "noise" as well.

FAQ

Q

Q

A

A

Animatics Corporation
tel: 408.748.8721 • fax: 408.748.8725 • www.animatics.com 100

FAQ

Tips and Tricks to Better Code and Motor Performance: (Continued)

How to create a high speed counter:

Port A and B can be configured as either quadrature encoder input or step and direction input. When used as Step and Direction,
you can use port A as a high speed counter. Simply issue "MS0" (stands for Mode-Step-Zero). This will clear out the external
encoder counter register (CTR) and set it to zero.

Then for each incoming pulse on port A, CTR will increment (or decrement) it’s value depending on the logic level of port B.

You can also set Port B as an output and control the direction of count. This method can be sued to reliably count at rates up to
2megahertz.

Capture Events and make decisions based on existing conditions:

Use Port G interrupt available in the "PLS" and "PS2" version firmware (available in all products except SM2315 and RTC series)

In the latest firmware, you can assign Port G to call C2 subroutine on interrupt. In doing so, any time Port G is grounded, it will call
C2 within 250 to 500 use conds. Then the CPU will process code sequentially from C2 down until it reaches "RETURNI" which
stands for "Return-Input".

The C2 code will be called and executed regardless of what the motor was doing at the time. It will not effect any motion (unless
the code in C2 is written to do so).

Example:

C2
x=@P		 'Capture position
y=CLK		 'Capture clock
z=@PE 	 'Capture Position Error
i=U&7		 'capture Ports A, B and C as a 3-bit masked value.
PRINT(Port G was grounded! ",#13)
SWITCH i	 'make decision based on input status.
	 CASE 0 'do what ever
BREAK
	 CASE 1 'do what ever
BREAK
	 CASE 2 'do what ever
BREAK
	 CASE 3 'do what ever
BREAK
	 CASE 4 'do what ever
BREAK
	 CASE 5 'do what ever
BREAK
	 CASE 6 'do what ever
BREAK
	 CASE 7 'do what ever
BREAK
ENDS
RETURN

In so writing the code in this method, you can have a motor not actually running any code at all until Port G is grounded.

	Quick Start Guide
	What You Will Need to Get Your SmartMotor™ Running

	A Quick Look at the SmartMotor™ Interface
	SmartMotor™ Controller Overview
	SmartMotors Hardware and Control at a Glance
	SmartMotor Communications at a glance
	Pre-Addressed Motors on Boot-Up
	Addressing SmartMotors from a Host PC or other Serial Device
	SmartMotor Program Flow at a Glance
	SmartMotor Modes of Operation and Motion Control Commands
	SmartMotor I/O Control at a Glance
	Default States and special uses of I/O ports
	I/O Programming examples

	“F=#” Function Command Overview
	Special Function and Special Cases
	1. Serial Buffer command: ! YES….., “!”…… is a command……
	2. Break Control Commands: (means to control internal break option)
	3. MF0 and MS0.
	4. UG (Default state control of Port G Input pin).
	5. PID1, PID2, PID4, PID8 commands.
	6. KG parameter. (Gravitational PID term)
	7. ENC0 (Default) and ENC1 (Optional) commands
	8. D command.
	9. Bs Status Bit, (Syntax Error Bit) also known as the Bull$H1T command……
	11. RUN?
	12. SILENT, SILENT1
	13. VLD and VST,
	14. RETURNF, RETURNI (PLS firmware only)
	15. MTB (Mode Torque Break)
	16. TH and THD commands and the Bh Status Bit
	17. AMPS command. (Defaults to 1000)
	18. STACK
	19. X and S commands
	20. Ba (Peak Over Current) Status Bit.
	21. LOAD and RCKS command.

	System Design Techniques to Aid in Motor Protection
	Selecting Power Supplies: Switching, Linear, and Unregulated Power Supplies:
	Mechanical Brakes:
	Position Error Limits:
	Amplifier Tuning
	Power supply Voltage Levels
	Firmware Options:
	Hard Stop Crashes:
	Loss of Power at motor connector while under load:

	Example SmartMotor™ Code
	Various Loops, Trigger Events and Subroutines
	Home to Hard Stop
	Home To Index (3 Examples)
	Cycle Time Calculator Subroutine
	Long Term Memory Example Storing Error Bits
	Analog Controlled variable Speed with Dead-band and offset
	Slave Conveyor Application
	16-Position Pre-select, BCD-Triggered
	16-Subroutine Pre-select, BCD-Triggered
	Record and Playback Exampl
	Expanded I/O using the DINIO-485
	Expanded I/O using the Anilink Opto-1 Board
	Hardware Error Handling Setup-Code: (See next page for Interrupt Subroutines)
	Traverse and Take-Up Winder Application

	SmartMotor™ Interfacing
	SmartMotor™ Connections:
	RS-232 Programming cable schematic to communicate with one motor via the main 7W2 Connector:
	RS-232 Serial Daisy-Chain cable to communicate to multiple motors via the DB-15 Connector
	RS-485 Parallel Daisy-Chain to communicate to multiple motors via the DB-15 Connector
	Connecting an external encoder for External closed-loop operation or for electronic gearing:
	Connection to a PLC or stepper card output for running in Step Mode:
	Connecting 2 motors for Electronic Gearing:
	Connection to Anilink Devices (Both LCD RJ Connection and OPTO-1 Molex connection shown)
	Typical Limit Switch Inputs:
	Simple Start/Stop Switch Input
	Start-E Stop Input
	Analog Input to a SmartMotor:
	Obtaining 2 functions out of One Input:
	Push-Button and Toggle Switch into single input:
	Binary (4 Bit BCD) input control:
	Cascade I/O Fault Control
	DE (Drive Enable) Option

	Command Set Overview
	Modes of Operation:
	Position Commands:
	External Encoder Motion Commands:
	Program Flow Structures:
	Variable/Data Storage EEPROM Read/Write Commands:
	Variables/System-Variables:
	System State Flags:
	Reset System State Flag:
	AniLink™ I/O Commands:
	Report to Host Commands:
	Motor Over Travel Limit Commands:
	Motor I/O Commands:

	FAQ
	Downloading and Uploading Programs to SmartMotors
	I/O Handeling
	Power Supplies and BackEMF Subjects
	Serial Communications
	Tips and Tricks to Better Code and Motor Performance:

