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Introduction

How long do you think it takes Ford Motor Company to run
one crash simulation?

About 36-160 hours*




Introduction

Two-variable Optimization Problem

“* Assumptions:
**50 iterations on average (optimization)
*»One crash simulation each iteration

**Total computation time is 3 to 11
months

“*Unacceptable in practice
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NOAA. Global Climate Model. Digital image. File:Global Climate Model.png - Wikipedia, the Free Encyclopedia. Wikipedia, 18 Feb. 2012. Web. 13 May 2013.
<http://en.wikipedia.org/wiki/File:Global_Climate_Model.png>.



Metamodeling

“* Approximation method for time-consuming, costly
simulation models

“* Approximates computationally intensive functions using
simple analytical methods




Regression

“*Four standard assumptions
about the random errors &

“*Zero mean ——
*»*Constant variance w0

“*Normality
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Standard Kriging

**Originated in geostatistics
(i.e. spatial statistics)

**Value at an unknown point
approximated by average of
the known values at
neighbors, weighted by
distance

“** Accounts for uncertainty
about the response surface




Stochastic Kriging

**A metamodeling
methodology developed for
stochastic simulation
experiments

*»*Distinguishes the (extrinsic) ~
uncertainty about the Q
response surface from the
(intrinsic) uncertainty
inherent in the stochastic
simulation




Applications
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Applications

Call Centers

Response-time
Performance

Load Assignments



Applications

Risk Management
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General Models

Regression Y;ix) =fx)'B+¢&x)
Standard kriging Y;x) =fx)"'B+M(x)
Stochastic kriging Y;x) =fx)'B+M(x) + &(x)

g;(x) intrinsic uncertainty

M(x) extrinsic uncertainty



Standard Kriging
Yx) = (x)T + M(x)

Y |,

M(x), extrinsic uncertainty




Stochastic Kriging
Y;(®) = £@TB + M) + &)

Y |,

g;(X), intrinsic uncertainty




MSE-Optimal Predictor

Suppose that all parameters are known
Y(X0) = Bo + Zm(Xo, ) '[Em + Ze] 7Y — Boly)

fo overall response mean
U average response
X\ extrinsic covariance matrix

Y. intrinsic covariance matrix



Assumptions

“*M(x) is a stationary Gaussian random field
“»Constant mean 0

+»Constant variance 72

STy = T2 exp(—llx — x’||§)2)

wgi(x)is N(O, V(x))



Parameter
Estimation




Estimation of Predictor

X, Bo, T2, and 0
“*Variances not observable, even at design points
**»Estimate with sample variances

«*Covariance matrix of diagonals (i.i.d. of &)

+*Use maximum likelihood estimator for rest




Likelihood Function

“*Function of parameters

*»Likelihood of observing given outputs for a set of
parameters

**Complementary to probability function

“*Higher likelihood is better




Gummi Bears. Digital image. Episode 49: It Was A Gummy Bear | Mattandmondo. N.p., 29 May 2012. Web. 13 May 2013.
<http://www.mattandmondo.com/podcast/archives/438>.



Likelihood Function

“*Function of parameters

*»Likelihood of observing given outputs for a set of
parameters

**Complementary to probability function

“*Higher likelihood is better




Nonlinear Optimization

**Find the combination of parameters to maximize the
likelihood function for our predictor

**R package MLEGP

2 “Maximum Likelihood Estimates of Gaussian Processes”

**Plug resulting parameters into predictor
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Assumptions

1. Stationary
Gaussian random
field (M).

2. Intrinsic noise (g)

Simulation is normally
distributed with

\ Zero mean. ‘

Metamodel

U

Model Fitting
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Results




Polynomials

“*Simple to use as test case

**Can test as high-dimensional as we want

“*Evenly distributed noise




Sample Replication

1D-Polynomial with Noise of 0.1 Standard Deviation
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Results

1D-Polynomial, 4th Degree, Evenly Allocated, 420 Replications
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Results

1050 Replications

4th Degree, Evenly Allocated,

I
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Results

1D-Polynomial, 4th Degree, Evenly Allocated, 2100 Replications
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Queuing Model




MM1 Queue

**Single server, single queue

“» A is expected arrival rate, u is expected service rate

o . A
»*Expected queue length is =y
“*Assume no trend

“Assume 0 < A< u

“**Average queue length



Results

Queue Length
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Results

Queue Length
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Results—Comparison
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Experimental
Design




Experimental Design

<*Goal is to minimize IMSE (n) = fxoeaeMSE(XO; n) dx,

¥ € R% is the experimental design space

“*k is the number of fixed design points

en! = (ny,ny, ..., Ng)

O:On:; = n;k (N, V(Xl)' nany V(Xk); ZM} r(XO))




Two-Stage Design

Stage 1

“*Select m predetermined design points Xy, ..., X,,; and
allocate ng replications to each x;

“*Estimate IV and Xy
<V can be estimated by standard kriging method V(x) = 6% + Z(x)

STy = T2 exp(—llx — x’||§)2)



Two-Stage Design

Stage 2

“*Jointly select k — m additional design points

“*Optimally allocate N — mn additional replications among
all design points

ozon:; = n: (N, V(Xl), . V(Xk); ZM} r(XO))



Algorithm




Algorithm

Stage 1

“*Generate m points from Latin Hypercube Sampling

+»*Calculate distances of given design points and theoretical
points

“*Choose the design points closest to the theoretical points



Algorithm

@ Theoretical design points

‘ Given design points

‘ a ‘ Design points selected for stage 1




Algorithm

Stage 2

**Simulate stage 1 data with m design points

**»Allocate optimal replications to all design points




Results

Queue Length

1D-MM1 Queue, Stage 1, 500 Replications
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Results—Comparison
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Allocations

Results—Allocations
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Simulation Effort

“*How many replications to allocate in stage 1?
«*Too few implies inadequate estimation in 72, By, and V

**»Too many implies reduced advantage of 2-stage procedure

“*How many design points to pick?
“*Depends on structure of simulation model




Simulation

4 D

Assumptions

1. Stationary
Gaussian random
field (M).

2. Intrinsic noise (g)

is normally

distributed with

\ Zero mean. ‘

Metamodel

U

Model Fitting:

Stage 1: Fit model to data generated from a
subset of predetermined design points, selected
using a Latin Hypercube design.

Stage 2: Optimally allocate (additional)
replications to all design points based on results
from Stage 1. Fit model to resulting data.




Problems ana
Future Work




Problems

“*Nonidentical simulation output at each design point

“*Estimated variance may end up nonpositive

“*Overestimated MSE and variance in stage 1

“*Bumps




Problems
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Problems

Queue Length
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Problems

Queue Length
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Allocations

Problems
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Problems

Queue Length

1D-MM1 Queue, Stage 2, 250 Replications
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Problems

0D-Polynomial, Evenly Allocated, 210 Replications
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Future Work

“*Impose additional conditions to enforce smoothness

*»* Different experimental designs
*»* Different ways of implementing 2-stage

“*How to pick design points

“*Enforce positive estimated variance




Questions?
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