
An Introduction to Computational
Probability and Statistics with R

Bee Leng Lee

2

© 2016 BY B L LEE Draft of September, 2016

Contents

I An Introduction to R 1

1 Getting Started 3
1.1 The R Console . 3
1.2 The R Editor . 5
1.3 The Working Directory . 7
1.4 Getting Help . 9
1.5 Exercises . 10

2 Fundamental Objects 13
2.1 Expressions and Assignment 13
2.2 Special Values . 15
2.3 Classes . 17
2.4 Environments . 18
2.5 Functions . 20

Calling Functions . 20
Specifying Arguments . 22
Operators . 23
Creating Functions . 27
Conditional Evaluation . 29
Environments . 30

2.6 Atomic Vectors . 31
Classes . 33
Coercion . 37

i

ii CONTENTS

Vectorized Operations and Loops 38
Recycling . 42

2.7 Lists . 43
Indexing: Single Versus Double Brackets 45
Accessing Components By Names 47
Applying Functions Componentwise 48

2.8 Saving and Loading Objects 49

3 Managing Data 53
3.1 Importing Univariate Data . 53
3.2 Generating Patterned Data 56
3.3 Factors For Categorical Data 59

Creating Factors . 59
Understanding Factors and Attributes 61

3.4 Structures For Tabular Data 63
Matrices . 64

Creating Matrices . 65
Example: Importing Unstacked Data 67
Indexing Matrices . 69
Accessing Elements By Names 71
Applying Functions To Rows And Columns 73

Data Frames . 74
Data Frames Are Lists 74
Data Frames Are Like Matrices 76
Importing and Exporting Data 77
Stacking and Unstacking 82

3.5 Sorting Data . 84
3.6 Built-in Data Sets and Packages 87

Loading Packages . 87
Installing and Removing Packages 90

3.7 Exercises . 91

4 Visualizing Data 93

© 2016 BY B L LEE Draft of September, 2016

Part I

An Introduction to R

1

Chapter 1

Getting Started

R is a programming language and comprehensive statistical platform for
data exploration and analysis. It is free and open source, which means any-
one can download and use the latest version of the software free of charge,
and the source code can be studied and modified without any restriction.
Yet the functionality of R rivals commercial packages. Organizations and
companies such as the FDA, Facebook and Google use R on a daily basis
[10]. The minimalist interface of R, however, can be daunting to beginning
users, especially those who are accustomed to the point-and-click interfaces
offered by commercial packages. The purpose of this chapter is to orient
beginning users. An up-to-date version of R for various computing platforms
can be downloaded from the Comprehensive R Archive Network (CRAN) at
http://cran.r-project.org/. We hasten to point out that while the R
graphical user interface (RGui) appears a little different on each platform,
there is no substantive difference otherwise.

1.1 The R Console

When R starts, a window similar to that shown in Figure 1.1 is presented. By
default the window, called the R console, displays some information about R
and a command prompt that is represented as a greater-than symbol (“>”).
The command prompt invites the user to type commands into R. When
the user completes a command and presses return or enter , the R interpreter
evaluates the command and displays the result in the console or a new window

3

http://cran.r-project.org/

4 CHAPTER 1. GETTING STARTED

Figure 1.1: The R console on Mac OS X.

whenever appropriate.
To illustrate the command-line interface, we use R as a calculator to

evaluate the sum of 1, 2 and 3:
> 1 + 2 + 3
[1] 6
The first line, excluding the command prompt, shows the command typed by
the user. The [1] preceding the result in the second line indicates that 6 is
the first element of the result—even when the result comprises one element.
If a command is incomplete when return or enter is pressed, R will display
the plus symbol (+) as a continuation prompt and await the user to complete
the command:
> 1 + 2 +
+ 3
[1] 6
In the second line, the plus symbol was produced by R while the value 3
was subsequently typed by the user. This can be confusing. It is possible to
customize the continuation prompt (and numerous other aspects of R). For
example, to indicate continuation by indenting with two spaces:

© 2016 BY B L LEE Draft of September, 2016

1.2. THE R EDITOR 5

> options("continue" = " ")
> 1 + 2 +

3
[1] 6
Sometimes a mistake is discovered while at the continuation prompt. To
abort the command and return to the command prompt, press esc .

1.2 The R Editor
It is easy to mistype a command, especially when it is complex and spans
multiple lines. Although R provides command-line editing, such as using
and to scroll through previous commands, a better approach is to write
a script or a list of commands in an editor. Besides making it easier to find
and fix errors, a script can be saved for future reuse.

R provides an integrated editor which allows a script to be executed in
part or whole from within the editor. In Figure 1.1, notice a menu bar
just above the console window;1 selecting File New Document opens an editor
window. Alternatively, one can use a keyboard shortcut, a method preferred
by experienced users since it is quicker than mouse navigation. A keyboard
shortcut comprises a modifier key and a character key. A modifier key is a
special key that temporarily alters the action of other keys or mouse clicks.
For example, pressing A normally produces a lowercase “a” but pressing
shift + A produces an uppercase “A”. To execute a keyboard shortcut, the
modifier key is held down while the character key is pressed. For example, to
open an editor window, press + N on OS X or Ctrl + N on Windows.

Figure 1.2 shows an R editor window, with three lines of commands,
atop the console window. To execute a single line of command, such as the
second line “4 + 5 + 6”, place the cursor anywhere on the line (which would
automatically highlight the line) and press + return on OS X or Ctrl + R
on Windows. The command will appear in the console window along with
any result. To execute multiple lines of commands, highlight the lines (such
as by dragging the mouse across the lines) and press the aforementioned
keyboard shortcut to execute commands.

There are two ways to execute all the commands in an R script. One is
to highlight the entire content by pressing + A on OS X or Ctrl + A on

1On OS X, the menu bar actually appears at the top of the screen.

Draft of September, 2016 © 2016 BY B L LEE

6 CHAPTER 1. GETTING STARTED

Figure 1.2: The R editor on Mac OS X.

Windows, followed by the keyboard shortcut for executing a command. The
other assumes that the script has been saved.2 From the menu bar, select
File Source File... and then locate and double-click on the name of the script
in the dialog box. This process of sending commands to R for execution is
referred to as “sourcing a script.” Note that R responds to a sourced script
a little differently; specifically, the results are not printed unless the user
provides instructions to do so. The simplest way to print a result is to use
the print(something) command, as shown on the third line of the script
in Figure 1.2.

An R script can include comments, which are explanatory notes that are
not meant to be evaluated by R. While a script may be written for personal
use, there often comes a time when modification is necessary and, without
comments, important details about how the code worked could have been
forgotten by then. In R, any text that follows the symbol “#” is ignored,
whether in a script or at the command prompt:

> 1 + 2 # This is ignored by R.
[1] 3

2By convention, the name of an R script ends with the suffix “.R”.

© 2016 BY B L LEE Draft of September, 2016

1.3. THE WORKING DIRECTORY 7

> 1 + 2 This is not.
Error: unexpected symbol in "1 + 2 This"

1.3 The Working Directory
Each R session has associated with it a working directory (or folder) where
files are retrieved from or saved to by default. Understanding this concept can
help avoid many frustrations, such as searching every folder imaginable on
the computer for a previously saved file or sourcing an outdated R script from
an unintended folder. The command getwd() gives the working directory,
which is usually /Users/username (not literally username) on OS X and
C:\Users\username \Documents on Windows.

As an illustration, consider sourcing from the R console a script previ-
ously saved as “myScript.R”. This is done using the source("filename ")
command:
> source("myScript.R")

If “myScript.R” is found in the working directory, R will execute its content;
otherwise, an error message will be printed, the last two lines of which are:
In file(filename, "r", encoding = encoding) :

cannot open file 'myScript.R': No such file or directory

To understand R’s response, imagine looking for someone by the name of
James Smith in a large organization with many offices in a building. If you
stumble into one of the offices and ask for James Smith, chances are you
will get a response similar to the above (some polite variant of “cannot find
James Smith: No such person”) or be greeted by a wrong James Smith. A
better approach to look for James Smith would be to specify, in addition to
his name, the division and department he works for. This information can
be represented hierarchically as /Division/Department/James Smith.

Files on a computer are grouped into folders, which are organized in
a hierarchy. The absolute pathname of a file describes its location in the
hierarchy by tracing a path from the top-most folder, called the root di-
rectory, through all the intermediate folders, to the file. It begins with a
“/” on OS X and “C:\” on Windows, where the letter “C” could be re-
placed by some other letter that identifies a drive or partition on the com-
puter. This is illustrated in Figure 1.3 for OS X. The absolute pathname

Draft of September, 2016 © 2016 BY B L LEE

8 CHAPTER 1. GETTING STARTED

root

folder2

folder4
file6 /folder2/folder4/file6

file5 /folder2/folder4/file5

folder3 file4 /folder2/folder3/file4

folder1

file3 /folder1/file3

file2 /folder1/file2

file1 /folder1/file1

Figure 1.3: The hierarchical file structure and absolute pathnames.

“/folder2/folder4/file6” in the bottom right corner indicates that file6
is a file located in a folder named folder4, which in turn is located in a
folder named folder2 in the root directory. The symbol “/” thus distin-
guishes folder levels, with the first “/” representing the root directory. If the
name of a file is specified without a “/” on OS X or “C:\” on Windows, say,
simply as “myScript.R”, it is a relative pathname and the file is assumed
to be located in the working directory. In other words, R assumes that the
absolute pathname of the file is “/Users/username /myScript.R” on OS X
or “C:\Users\username \Documents\myScript.R” on Windows.

It is useful to organize projects into directories and, when working on
a particular project, set R’s working directory to the associated directory.
This can be done using the command setwd("absolutePathName "). For
example, on the author’s computer, the default working directory is:

> getwd()
[1] "/Users/blee"

A folder named book has been created in /Users/blee to store files related
to this book. To designate this folder as the working directory:

> setwd("/Users/blee/book")

On Windows, the equivalent command would be:

© 2016 BY B L LEE Draft of September, 2016

1.4. GETTING HELP 9

Figure 1.4: The R help window on Mac OS X.

> setwd("C:/Users/blee/Documents/book")

Note that pathnames are always specified with “/” in R, even on Windows;
using “\” is a common mistake among beginning users who are accustomed
to Windows.

1.4 Getting Help
R has a comprehensive built-in help system which may be accessed in several
ways, one of which is to select Help R Help from the menu bar. This presents
a window similar to that shown in Figure 1.4, wherein users can search for
help on various commands and find links to several manuals, in particular
the highly recommended “An Introduction to R” by Venables, Smith and the
R Core Team [13]. The help(topic) command can alternatively be used
to invoke the help system. For example, to display the documentation on
the print command, either type help(print) or ?print at the command
prompt, where the question mark (“?”) is a shortcut for the command help.

There is also a plethora of internet resources for learning R and getting

Draft of September, 2016 © 2016 BY B L LEE

10 CHAPTER 1. GETTING STARTED

help with problems. A few of these are listed below.

• CRAN, which contains the links shown in Figure 1.4 and more.
• R-Bloggers (http://www.r-bloggers.com/), where daily news and tu-

torials about R can be found.
• Rseek (http://rseek.org/), an R-specific search engine.
• Stack Overflow (http://stackoverflow.com/tags/r), a site with a

very active R community asking and answering questions about R.

1.5 Exercises
1. By default, a short introductory message is displayed in the console win-

dow when R starts.

(a) Write down the version number of R installed on your computer.
(b) Write down the platform under which R is running on your computer.
(c) List the four commands displayed in the console window just above

the first command prompt.

2. The keyboard shortcuts for some commands can be found in the drop-
down menus in the menu bar (usually to the right of the listed commands).
For example, one way to save an R script is to select File Save from the
menu bar; the corresponding keyboard shortcut is + S on OS X or
Ctrl + S on Windows. List the keyboard shortcuts for the following.

(a) File Open Document on OS X or File Open script on Windows, which
opens a dialog box to load a previously saved script into the R editor.

(b) Edit Clear Console , which clears the screen in the console window.

3. Create an R script that contains the following two lines:

1 - 2 + 3 * 4 / 6
print(1 - 2 + 3 * 4 / 6)

Create a folder named compStat in the default working directory of R and
save the script as ex1-3.R in the folder.

(a) In the R editor, execute the first line of ex1-3.R and note the result
displayed in the R console.

© 2016 BY B L LEE Draft of September, 2016

http://www.r-bloggers.com/
http://rseek.org/
http://stackoverflow.com/tags/r

1.5. EXERCISES 11

(b) Source ex1-3.R from the R console and note the result displayed.
Which line of command does the result correspond to? Explain.

Draft of September, 2016 © 2016 BY B L LEE

12 CHAPTER 1. GETTING STARTED

© 2016 BY B L LEE Draft of September, 2016

Chapter 2

Fundamental Objects

Everything that exists in R is an object. This includes constants, data sets,
functions and graphs. But what is an object in R? Put simply, it is a container
for information referred to as value and it is self-describing—like a labeled
food jar, except that it usually has a name. Among the descriptions attached
to an object is its class, which defines what it contains as well as the way its
content is organized. This basic concept of an object is one of the keys to
understanding how to work with data in R, for a common mistake in R is to
attempt to perform an operation on an object of a class that is incompatible
with the operation. In this chapter, we present the rudiments of working
with some of the fundamental objects in R, including assignments, special
values, environments, functions, atomic vectors and lists.

2.1 Expressions and Assignment

Any command that is typed into the console is an expression, a symbol or a
combination of symbols that evaluates to a value. For example, 1 + 2 is an
expression which evaluates to the value 3. When R evaluates an expression,
an object is created somewhere in the computer memory to store the value of
the expression. The object (and hence the value it contains) is only accessible
by name; an anonymous object gets deleted from the computer memory by
a process called garbage collection. Thus, most objects are created by an
operation called assignment, which establishes a binding or an association
between an object and a name. This is usually done with the use of a symbol

13

14 CHAPTER 2. FUNDAMENTAL OBJECTS

composed of a less-than sign followed by a minus sign (“<-”), pronounced as
“gets”. For example:
> x <- 1 + 2 - 3
Here an object is created when R first evaluates the expression “1 + 2 - 3”.
The object holds the value of the expression and is bound to the name x by
assignment. It is now accessible by name. For example, typing its name into
the console displays its value (to the screen by default):
> x
[1] 0
It can also be used to create further objects:
> y <- x - 2
> y
[1] -2

There is a special object named .Last.value that contains the value of
the last evaluated expression:
> 1 + 2 - 3
[1] 0
> .Last.value
[1] 0
> 3 + 2 - 1
[1] 4
> .Last.value
[1] 4
It might come in handy when a computationally intensive expression has
been evaluated but, by an oversight, its value has not been assigned a name.

An object name can contain letters, digits, periods (“.”) and underscores
(“_”), with the restriction that it must begin with a letter or a period. If it
begins with a period, it cannot be followed by a digit. R is case sensitive,
for example, it considers y and Y to refer to different objects. It is useful to
keep in mind that the name of an object is just a symbolic representation
of the location of the object in the computer memory, analogous to a postal
address that is used to indicate the location of a building. In other words,
an object and its name are separate entities.1 In the preceding listings, for

1In fact, the name of an object itself is an object, one which a user rarely needs to deal
with and will not be discussed here.

© 2016 BY B L LEE Draft of September, 2016

2.2. SPECIAL VALUES 15

example, any subsequent changes to the value of x does not affect the value
of y:

> x <- 100
> y
[1] -2

It is the object that contains the value of x - 2, at the time of assignment,
that is bound to y.

Assignments can alternatively be made using the symbol “=”:

> x = 1 + 2 - 3

Some may prefer the symbol “=” to the symbol “<-” because it requires
one less keystroke, but the two are not equivalent: “<-” always represents
assignment whereas “=” can represent assignment (and more).

2.2 Special Values

Certain words in R are reserved and may not be used to name an object.
Among these are special values that represent mathematical abstractions,
rather than values in the usual sense, described as follows.

Inf Most students of mathematics recognize the symbol “∞”, called the
lemniscate, which represents the concept of infinity. While infinity can
be an elusive mathematical concept,2 it means one of two things in R:
either the value of an expression is too large (positively or negatively)
to be represented by the computer, or a nonzero value is being divided
by zero. These are indicated by the special value Inf. For example:

> 10^400
[1] Inf
> 1 - 10^400
[1] -Inf
> 1 / 0
[1] Inf

2A persistant myth in the history of mathematics is that Georg Cantor, a pre-eminent
mathematician, descended into isolation and insanity as a consequence of his inability to
resolve important questions about infinity.

Draft of September, 2016 © 2016 BY B L LEE

16 CHAPTER 2. FUNDAMENTAL OBJECTS

Every computer has a well-defined range of values that it can represent;
for most, the largest number allowed is approximately 1.79× 10308:
> 1.79 * 10^308
[1] 1.79e+308
> 1.8 * 10^308
[1] Inf
Note that R uses the notation aeb, where a and b are numbers, to
stand for a × 10b; that is, the output 1.79e+308 means 1.79 × 10308.
This notation can also be used at the command prompt.

NaN When the result of a computation is undefined, R returns the special
value NaN, which stands for “not a number.” For example:
> 0 / 0
[1] NaN
> Inf / Inf
[1] NaN
> sqrt(-1)
[1] NaN
Warning message:
In sqrt(-1) : NaNs produced
Notice that a warning message is printed only when the expression
“sqrt(-1)” is evaluated. The reason is, unlike 0/0 or ∞/∞, both of
which are mathematically undefined,

√
−1 is defined in the complex

number system, which is understood by R if the number −1 is explicitly
expressed as a complex number (see page 36).

NA Missing values are a common occurrence in real-world data sets, which
arise because some values are corrupted or unobserved to begin with.
In R, missing values are represented with the special value NA, which
stands for “not available.” In general, any computations involving an
NA results in an NA:
> NA - NA
[1] NA
> sqrt(NA)
[1] NA
> NA / 0
[1] NA

© 2016 BY B L LEE Draft of September, 2016

2.3. CLASSES 17

NULL refers to a special object in R that is used to indicate that an object does
not exist. It is often confused with the special value NA. To illustrate
the difference between NULL and NA, the command length(object)
can be used to find out the number of elements each object contains:
> length(NA)
[1] 1
> length(NULL)
[1] 0
Note that NULL is not the only object in R that contains no elements.
It is useful to think of NA as a placeholder for a value that should have
been there, whereas NULL is a nonexistent value.

2.3 Classes
The class of an object describes its content, so that the object can be handled
in an appropriate manner. Specifically, the same command, when applied
to objects of different classes, can lead to different operations and produce
different results. For example, consider the addition of two values using “+”.
If both values are ordinary numbers, “+” is just a basic arithmetic operation:
> x <- 25
> x + 7
[1] 32

If one of the values is a date and the other is a number, a different operation
is performed:

> y <- Sys.Date()
> y
[1] "2015-05-25"
> y + 7
[1] "2015-06-01"
Here the command Sys.Date() returns an object that contains the current
date, which is bound to the name y. When the value 7 is added to the
current date, the result is the date seven days later. How does R know that
a different operation is called for? Because R first queries an object for its
class, then selects an operation that is appropriate for that class of objects,
if available. The command class(object) returns the class of an object:

Draft of September, 2016 © 2016 BY B L LEE

18 CHAPTER 2. FUNDAMENTAL OBJECTS

> class(x)
[1] "numeric"
> class(y)
[1] "Date"

Several classes of objects will be introduced in Section 2.6 and 2.7.

2.4 Environments

When R evaluates an expression that contains a name, say, “x + 1”, how
does R locate the object associated with the name “x” to retrieve the value?
Effective use of R for data analysis requires an understanding of how R
organizes objects created within it. The concept is a familiar one, as will be
seen shortly.

During an assignment, the binding (or association) between an object
and its name is stored in a specialized object called environment. More than
one environment exists during an R session; in fact, in a typical R session,
environments are constantly being created and destroyed, as discussed in the
next section (page 30). In addition to a set of bindings, an environment
contains a pointer to another environment, called the enclosing or parent
environment. This is illustrated in Figure 2.1. It follows that there is a chain
of environments, like a hierarchy of folders used to store files on a computer,
where each folder contains a single file that catalogs a set of names and the
locations of the associated objects, and a folder with a similar content. The
chain of environments ends with the empty environment, the only environ-
ment without an enclosing environment and, as the name suggests, contains
no bindings.

Whenever an expression is evaluated, one of the environments is “active”,
referred to as the local environment. To resolve a name that appears in the
expression, R searches the local environment for a name that matches. If
a matching name is found, the associated object is located and returned;
otherwise, the enclosing environment is examined and the process repeated.
An error is signalled if all the enclosing environments have been searched and
a matching name cannot be found:

> x + 1
Error: object 'x' not found

© 2016 BY B L LEE Draft of September, 2016

2.4. ENVIRONMENTS 19

Computer Memory

Location 1

9.9

Location 2

0

Location 3

"Hello"

Location 4

"w"

Location 5

-2

Location 6

100

Location 101

parent

Bindings

Environment

x: location 2

y: location 5

...

Location 321

parent

Bindings

Environment

...

...

Figure 2.1: A schematic representation of an environment and its enclosing
environment.

An analogy would be a “full-service” library, where a patron simply walks
to the front desk to ask for a book by name. The librarian first searches the
library catalog for a matching name to locate the shelf that holds the book.
If found, the book is retrieved and handed to the patron; otherwise, the
librarian proceeds to search the catalog of a branch library, until all branch
libraries are exhausted.

Most users do not need to explicitly deal with environments. For now,
it suffices to know that when R starts, a global environment or workspace is
created, and every subsequent assignment that takes place at the command
prompt adds an entry to it. In other words, the workspace is the local
environment of all assignments that take place at the command prompt.
The command ls() may be used to display the names contained in the
workspace, which is usually empty at the beginning of an R session:

> ls()

Draft of September, 2016 © 2016 BY B L LEE

20 CHAPTER 2. FUNDAMENTAL OBJECTS

character(0)

Here “character(0)” may be interpreted as “empty” for now. New assign-
ments create new bindings that populate the workspace:

> x <- 1
> y <- 2
> z <- 3
> ls()
[1] "x" "y" "z"

To remove one or more bindings, use the command rm(objects):

> rm(x)
> ls()
[1] "y" "z"
> rm(y, z)
> ls()
character(0)

When R evaluates the command “rm(x)”, for example, it dissociates the
name x and the object that was originally bound to it. The name x is
removed from the workspace, like erasing an entry in a catalog, but nothing
is done to the object itself.

2.5 Functions
A function in R is similar to a function in mathematics, in that it may take
one or more arguments as input, performs some operations and produces an
output. The input corresponds to a set of objects and the output is another
object. Unlike a mathematical function, however, an R function may require
no arguments.

Calling Functions

R has many built-in functions, including the mathematical functions found
on most scientific calculators, such as power, exponential and logarithmic. A
function call is a command to execute the code of a function, like pressing
one or more buttons on a calculator to perform a calculation. It usually

© 2016 BY B L LEE Draft of September, 2016

